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TAB                                                                            DESCRIPTION 

1.  Agenda for Meeting, Wednesday, July 14, 2010 

2.  Press Release: CFTC Announces Members of the CFTC’s Technology Advisory Committee 

3.  Technology Advisory Committee Members 

4.  J. Bates, Algorithmic Trading and High Frequency Trading: Experiences from the Market and Thoughts on 
Regulatory Requirements (July 2010).  

5.  B. Boultwood, HFT and Algorithmic Trading Issues and Regulatory Considerations (July 2010).  

6.  J. Castura, R. Litzenberger, and Richard Gorelick, RGM Advisors, LLC, Market Efficiency and 
Microstructure Evolution in U.S. Equity Markets: A High Frequency Perspective (April 22, 2010).  

7.  A. Chaboud, B. Chiquoine, E. Hjalmarsson, and C. Vega, Rise of the Machines: Algorithmic Trading in the 
Foreign Exchange Market, BD. OF GOVERNORS OF THE FED’L RES. SYS. INT’L FINANCE DISCUSSION 

PAPERS, No. 980 (October 2009).  

8.  J. Cvitanić and A. Kirilenko, High Frequency Trading and Asset Prices (March 11, 2010). 

9.  B. Durkin, The Impact of Algorithmic and High Frequency Trading on CME Group, Inc. Markets (July 2010).  

10.  Futures Industry Association, Market Access Risk Management Recommendations (April 2010).  
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CFTC’s Technology Advisory Committee 
1155 21st Street, N.W. 

Washington, DC 20581 
 

July 14, 2010 
Agenda 

 
11:45 a.m. to 12:00 p.m. Check-in with CFTC Reception – Lobby Level 

  

12:00 p.m. to 12:50 p.m. Lunch with CFTC Commissioners and Technology Advisory Committee 
Members, 9th Floor Conference Room 
 

  

1:00 p.m. to 5:00 p.m. TAC Meeting, Hearing Room 

  

1:00 p.m. to 1:10 p.m. Opening Remarks: Commissioner Scott D. O’Malia, Chairman, TAC 
 

1:10 p.m. to 1:30 p.m. Opening Remarks of CFTC Commissioners: Chairman Gary Gensler, 
Commissioner Michael Dunn, Commissioner Jill Sommers, and 
Commissioner Bart Chilton 
 

1:30 p.m. to 1:40 p.m. Overview of Meeting and Introduction of Presenters 
 

1:40 p.m. to 2:00 p.m. FIA’s Market Access Risk Management Recommendations, Mary Ann Burns, 
Executive Vice President, Futures Industry Association 
 

2:00 p.m. to 3:00 p.m. Discussion of FIA’s Market Access Risk Management Recommendations 
 

3:00 p.m. to 3:15 p.m. Break (Restrooms are located on the Mall Level) 
 

3:15 p.m. to 3:35 p.m. A Perspective on High Frequency Trading (HFT) from RGM Advisors, LLC, 
Richard Gorelick  
 

3:35 p.m. to 4:00 p.m. High Frequency Traders and Asset Prices, Andrei Kirilenko, Senior Financial 
Economist, CFTC Office of the Chief Economist 
 

4:00 p.m. to 4:45 p.m. Discussion of HFT presentations, debate on need for HFT best practices, 
and next steps for the TAC.   
 

4:45 p.m. to 5:00 p.m. Concluding Remarks of CFTC Commissioners: Chairman Gary Gensler, 
Commissioner Michael Dunn, Commissioner Jill Sommers, Commissioner 
Bart Chilton and Commissioner Scott D. O’Malia, Chairman, TAC 
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Commodity Futures Trading Commission 
Technology Advisory Committee Members 

 
Dr. John Bates 
Senior Vice President, Chief Technology Officer and Head of Corporate Development 
Progress Software 

  Dr. Bates is Senior Vice President, Chief Technology 
Officer (CTO) and head of Corporate Development for Progress Software.  Dr. Bates is 
recognized as a driving force behind the emergence of complex event processing (CEP) and 
the commercial use of event processing applications in business solutions, including capital 
markets trading, risk and compliance, telecommunications, fraud prevention, and smart 
logistics.  Prior to joining Progress Software, Dr. Bates was the co-founder, president and 
CTO of Apama (acquired by Progress Software in April 2005).  Before Apama, Dr. Bates 
was a tenured academic at Cambridge University, where he directed the research into 
distributed computing systems. 
 
            
Brenda Boultwood 
Chief Risk Officer 
Constellation Energy 

  Ms. Boultwood is Senior Vice President and Chief Risk 
Officer for Constellation Energy.  She leads risk management activities for Constellation 
Energy and its businesses, including defining and assessing enterprise-wide business risks 
and facilitating proactive decision-making to effectively manage the risks associated with 
each business line.   

Prior to joining Constellation Energy, Ms. Boultwood most recently served as global 
head of strategy, Alternative Investment Services for J.P. Morgan Chase & Company, where 
she was responsible for developing strategy for the company’s Hedge Fund Services, Private 
Equity Fund Services, Leveraged Loan Services and Global Derivative Services business 
lines.  During her tenure at J.P. Morgan Chase, she also served as global head, strategic risk 
management for its Treasury Services group and as global business head, Global Derivative 
Services of its Alternative  Investment Services group.  Ms. Boultwood joined J.P. Morgan 
Chase when it acquired Bank One Corporation in 2003.  Prior to the merger, she held risk 
management positions with Bank One Corporation, having served as head, corporate market 
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risk management and head, corporate operational risk management and then advancing to 
head, global risk management for its Global Treasury Services group.  
 
Ms. Boultwood also worked with PricewaterhouseCoopers as a senior manager in its 
Financial Risk Management Consulting Practice and was employed with Chemical Bank 
Corporation as a financial engineering associate.  In addition, she spent six years teaching in 
the University of Maryland’s Master of Business Administration program. 
 
Ms. Boultwood graduated with honors from the University of South Carolina with a 
bachelor’s degree in international relations.  She also earned a Ph.D. in economics from the 
City University of New York.   
 
            
John Breyault 
Vice President, Telecommunications and Fraud Public Policy 
National Consumers League 

 
 
 
 
 
 
 
 

   Mr. Breyault joined the National Consumers League in 
September 2008.  Mr. Breyault’s focus at NCL is on advocating for stronger consumer 
protections before Congress and federal agencies on issues related to telecommunications, 
fraud, technology, and other consumer concerns.  In addition, Mr. Breyault manages NCL’s 
Fraud Center and coordinates the Alliance Against Fraud coalition.  Mr. Breyault is also 
Research Director for the Telecommunications Research and Action Center (TRAC), a 
project of NCL.  In his role with TRAC, Mr. Breyault advocates on behalf of residential 
consumers of wireline, wireless, VoIP, and other IP-enabled communications services. 
 
Prior to coming to NCL, Mr. Breyault spent five years as director of research at Amplify 
Public Affairs, where he helped launch the firm’s Web 2.0-based public affairs practice and 
focused on producing actionable public policy research.  Earlier in his career, Mr. Breyault 
worked at Sprint in its International Carrier Services Division and at the American Center 
for Polish Culture in Washington, DC. 
 
Mr. Breyault was a member of the FCC’s Consumer Advisory Committee from 2005 to 2007 
and served on the Board of the Arlington-Alexandria Coalition for the Homeless.  He is a 
graduate of George Mason University, where he received a bachelor’s degree in International 
Relations. 
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Dr. Peter Carr 
Global Head of Market Modeling 
MorganStanley 

  Dr. Carr is a Managing Director at Morgan Stanley in New 
York.  He is also the Executive Director of the Masters in Math Finance program at NYU’s 
Courant Institute.  Prior to his current positions, Dr. Carr headed quantitative research 
groups at Bloomberg LP and at Banc of America Securities.  His prior academic positions 
include 4 years as an adjunct professor at Columbia University and 8 years as a finance 
professor at Cornell University.  Dr. Carr is currently the treasurer of the Bachelier Finance 
Society and an associate editor for 8 journals related to mathematical finance and derivatives.  
He is also credited with numerous contributions to quantitative finance including:  co-
inventing the variance gamma model, inventing static and semi-static hedging of exotic 
options, and popularizing variance swaps and corridor variance swaps.  Dr. Carr received his 
Ph.D. in Finance from UCLA.  
 
            
Michael Cosgrove 
Managing Director-Head of Commodities & Energy Brokerage, North America 
GFI Group 
 

   Mr. Cosgrove started his career with Amerex Oil 
Associates in 1981 as a broker of international crude oil.  In 1986, Mr. Cosgrove became a 
partner and Managing Director of Amerex’s European operations.  During the next 20 years 
Mr. Cosgrove expanded Amerex’s business globally until; in 2006 it comprised 250 
employees serving a broad range of international energy and petroleum markets from 
offices.  In 2006 Mr. Cosgrove joined GFI in connection with GFI’s purchase of the 
Amerex North American businesses.  In the following year the Amerex U.K. and European 
businesses were sold in a management buyout and subsequently acquired by Tullet Prebon.  
In 2004, Mr. Cosgrove was named in the Energy Risk Hall of Fame.  Mr. Cosgrove became 
Managing Director and Head of Commodities & Energy Brokerage for GFI in July 2008 and 
is responsible for all of GFI’s commodities & energy business in North America, including 
its Amerex and StarSupply divisions. 
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Gary A. DeWaal 
Senior Managing Director and General Counsel 
Newedge USA, LLC 

   Mr. DeWaal is a Senior Managing Director and the 
General Counsel of Newedge, as well as a member of Newedge’s governing Executive 
Committee.  Newedge was created on 2 January 2008 from the merger of the Fimat and 
Calyon Financial Groups (Newedge refers to Newedge Group and all its branches and 
worldwide subsidiaries.  Newedge Group is jointly owned by Société Générale and Calyon).  
Newedge’s worldwide Legal, Compliance and Financial Crimes Prevention (including AML) 
departments report to Mr. Dewaal. 
 
Mr. Dewaal joined Fimat in March 1995 from Brody White & Company where he served, at 
various times, as President, General Counsel, Head of Operations and Head of Internal 
Audit since 1986.  Previously Mr. Dewaal worked for the U.S. Commodity Futures Trading 
Commission’s Division of Enforcement in NYC, and Mudge Rose Guthrie & Alexander, a 
Wall Street corporate law firm whose principal partner was once Richard Nixon. 
 
Mr. Dewaal also taught a course entitled “Trading Derivatives: Practice and Law” for most 
years from 1996 through 2006, and has also recently been an annual guest lecturer for the 
International Finance and Law program in New York City of the State University of New 
York at Buffalo School of Law. 
 
Mr. Dewaal graduated in 1980 with JD and MBA degrees from the SUNY Buffalo and in 
1976 from the State University of New York at Stony Brook where he received a BA degree 
in English and economics; was elected to Phi Beta Kappa and Omicron Delta Epsilon 
(international economics honors society); and co-received awards as the University’s top 
overall graduating senior and junior. 
 
Mr. Dewaal has published numerous articles on futures and securities industry issues, and 
frequently lectures or appears as a speaker at futures and securities industry conferences or in 
training sessions for regulators. His most recent articles are “Time to Clean up after the 
Party” (The Financial Times, October 14, 2008), “America’s Financial Regulation Needs an 
Overhaul (The Financial Times, October 31, 2007), “Chicago’s Merger Has to Protect the 
Users’ Interest,” (The Financial Times, November 15, 2006), “Streamlining Regulation” (The 
Washington Times, August 2, 2005) and “America Must Create a Single Financial Regulator 
(The Financial Times, May 19, 2005). He most recently participated as a panelist or speaker 
on the following panels: Moderator: “Soup to Nuts: General Futures Overview,” Futures 
Industry Association, Annual Law and Compliance Conference (May 2009); Panelist: “Crisis 
Management: What Happens When Global Firms Fail,” International Regulators 
Symposium and Training Conference, Commodity Futures Trading Commission (March 
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2009); Moderator: “How Have Current Market Conditions Impact Opportunities in Asia,” 
Futures Industry Association, Annual Futures Industry Conference (March 2009); 
Moderator: “Lessons Learned from the Fall (2008) that Was,” Annual International 
Regulators Symposium and Training Conference, Commodity Futures Trading Commission 
(October 2008); Lecturer: “Observations on Kerviel: A Broker’s Perspective,” Australian 
Securities and Investment Commission (September 2008); Panelist: “Managing Risk in 
Volatile Markets, Financial Industry Regulatory Authority (September 2008); Moderator: 
“International Transactions” and panelist “Internal Controls post Kerviel:” Futures Industry 
Association, Annual Futures Industry Conference (March 2008); Panelist: “Introduction to 
Futures Regulation,” New York City Bar Association Continuing Legal Education Program 
(December 2007); “Crisis Response,” Annual International Regulators Symposium and 
Training Conference, Commodity Futures Trading Commission (October 2007); and 
Moderator: “Asian Regulatory Issues,” Taiwan Financial Securities Commission (October 
2007) and FIA Asia Conference (October 2007). 
 
Mr. Dewaal lives in Brooklyn, New York with his wife, Myrna Chao, and two daughters, 
Justi and Nyasia. In his spare time, Mr. Dewaal is an avid photographer, and bicycles and 
cooks for fun. 
 
            
Donald F. Donahue 
President and Chief Executive Officer 
The Depository Trust & Clearing Corporation 
 

   Mr. Donahue is Chairman and Chief Executive Officer for 
The Depository Trust & Clearing Corporation and for three of DTCC’s operating 
subsidiaries, The Depository Trust Company, Fixed Income Clearing Corporation and 
National Securities Clearing Corporation.  He took this position in 2007, following on one 
year as President and Chief Executive Officer for DTCC, DTC, FICC and NSCC, and three 
years as Chief Operating Officer for DTCC and as President and Chief Operating Officer 
for DTC and NSCC. 
 
Mr. Donahue has been with DTCC and its predecessor organizations since 1986.  During his 
time at DTCC Mr. Donahue has held positions in a variety of areas, serving as head of the 
depository’s Operations Division from 1995 until 1997, as the depository’s Chief 
Information Officer from 1997 until 2000, and as head of DTCC’s Customer Marketing and 
Development Division, with responsibility for strategic planning, product development, IT 
applications development, and technology infrastructure support and telecommunications, 
from 2000 to 2003. 
 
Prior to joining the depository, Mr. Donahue worked for five years for Barr Brothers & Co., 
Inc., a broker/dealer specializing in municipal securities.  He worked for the Municipal 
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Securities Rulemaking Board, the self-regulatory organization governing the U. S. municipal 
securities markets, from 1977 to 1985, first as Assistant Executive Director and then as 
Deputy Executive Director.  From 1985 to 1986 he was President of two affiliated 
companies that developed and marketed secondary market credit enhancements for 
municipal securities. 
 
From May 2004 to June 2006, Mr. Donahue served, under an appointment by Secretary John 
W. Snow of the United States Department of the Treasury, as Sector Coordinator for the 
U.S. Banking and Finance Sector in connection with the Treasury Department’s 
responsibilities as lead agency for the Sector under Homeland Security Presidential Directive 
7.  In that capacity Mr. Donahue served as Chairman of the Financial Services Sector 
Coordinating Council for Critical Infrastructure Protection and Homeland Security, a private 
sector group that interacts with the Treasury Department and Federal and State regulators 
on infrastructure protection and homeland security issues.  From April 2005 to April 2006, 
Mr. Donahue also served as Chairman of the Partnership for Critical Infrastructure Security, 
Inc., an organization of all of the Sector Coordinators appointed under HSPD-7 that works 
with the U.S. Department of Homeland Security on critical infrastructure protection matters. 
 
Mr. Donahue has participated in a variety of financial services industry committees and task 
forces. He currently serves on the Board of Directors of the United Way of New York City, 
and on the Board of Directors of XBRL US, the nonprofit consortium for XML business 
reporting standards in the U.S. financial markets. 
 
Mr. Donahue has a B.A. degree in History from Columbia University. 
 
            
Bryan T. Durkin 
Chief Operating Officer and Managing Director, Products & Services 
CME Group Inc. 

   Mr. Durkin has served as Chief Operating Officer and 
Managing Director, Products & Services of CME Group since February 2010.  He is 
responsible for the company’s Products & Services, Global Operations, Technology and 
Enterprise Computing, and Enterprise Solutions Divisions.  Previously, he served as 
Managing Director and Chief Operating Officer since July 2007.  He also led the global 
integrations following CME’s merger with the Chicago Board of Trade (CBOT) in 2007 and 
CME Group’s acquisition of the New York Mercantile Exchange (NYMEX) in 2008.  He is 
a member of the COMEX Governors Committee and a Director of the CME Foundation.  
Before joining CME Group, Durkin served as Executive Vice President and Chief Operating 
Officer of the Chicago Board of Trade (CBOT).  Prior to that role, he was in charge of the 
CBOT’s Office of Investigations and Audits where he oversaw the audits, financial 
surveillance, trade practice and market surveillance self-regulatory and enforcement divisions 
for the exchange.  His career with both CME Group and CBOT spans more than 25 years.  
Durkin holds a bachelor’s degree in business administration and an MBA from Lewis 
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University.  He has been an adjunct faculty member of Lewis University’s MBA program, 
teaching courses in organizational behavior and management. 
 
            
Richard B. Gorelick 
Chief Executive Officer 
RGM Advisors, LLC 

   Mr. Gorelick is the Chief Executive Officer of RGM 
Advisors, LLC, an automated trading firm that he co-founded in 2001.  The company 
applies scientific approaches and computing power to automated trading strategies in 
multiple asset classes around the world.  The company is headquartered in Austin, Texas, 
and, through a subsidiary, maintains a London office.  
  
Prior to founding RGM, Mr. Gorelick was the Chief Strategy Officer of Deja.com, Inc., 
which he joined in 1999, as the company's General Counsel.  Prior to Deja, Mr. Gorelick 
was a corporate attorney in Coudert Brothers' New York office.   
 
Mr. Gorelick received a B.A. in international relations from the University of Pennsylvania 
and a J.D. from the Georgetown University Law Center. 
 
            
Dr. Michael Gorham 
Industry Professor of Finance and Director 
IIT Center for Financial Markets 
Illinois Institute of Technology 

  IIT Industry Professor Michael Gorham served for more 
than three decades as a research economist at the Federal Reserve Bank of San Francisco.  
Additionally, Prof. Gorham served as vice president of product development, commodity 
marketing, education and international marketing spanning 18 years at the Chicago 
Mercantile Exchange.  He also has academic and research experience at IIT’s Center for Law 
and Financial Markets, has been editor of the Journal of Global Financial Markets and 
provides consulting services to international exchanges and regulators.  Most recently, Prof. 
Gorham served as the first director of the Division of Market Oversight for the Commodity 
Futures Trading Commission.  
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Simon Grensted 
Managing Director, Business Development 
LCH.Clearnet 

   Mr. Grensted is Managing Director, Business 
Development.  He joined the company in 1997 to design OTC Clearing services.  The first 
of these was the OTC interest rate SwapClear service.  Since going live in 1999 the service 
has grown to include, as users, the majority of the global interbank market makers. 
  
The team has gone on to develop OTC services in repo and bonds, energy, freight and 
equity derivatives.  More recently, he has been involved in developing clearing services for 
Nodal Exchange, the new US power market as well as the newly formed Hong Kong 
Mercantile Exchange (HKMEx).    
  
Prior to joining LCH.Clearnet, Mr. Grensted was Director of IT and Operations at 
EuroBrokers, one of London’s largest brokers in emerging markets, money markets and 
derivative instruments. 
  
Previously, for eleven years from 1982, Mr. Grensted was Managing Director of a software 
and systems vendor designing and implementing financial systems for banks, analytical 
products for information vendors and image processing systems for space and defence.  
During this time he was responsible for the development of a number of market leading 
products. He has also worked for Reuters and Datastream during his career in financial 
systems and product design. 
  
Mr. Grensted has a BSc from University College London in Electrical and Electronic 
Engineering and has been a visiting lecturer at Leeds and Sheffield universities. 
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Jill L. Harlan 
Corporate Risk Manager 
Caterpillar, Inc.  

   Ms. Harlan is currently the Corporate Risk Manager 
responsible for managing the risk associated with Caterpillar Inc.’s foreign exchange 
exposures related to the Machine & Engine business.   
 
Ms. Harlan joined Caterpillar as a Finance Analyst in 1988.  She is a graduate of 
Western Illinois University with a Bachelors of Business degree in Finance.  She has 
had a diverse career with assignments focused on both core treasury operations and 
in marketing business units.  Prior to her current position, she served as a Region 
Finance Manager for North American Commercial Division, Enterprise Risk 
Manager in Corporate Auditing, Treasurer for Asia Pacific Division, Finance Services 
Manager for Caterpillar of Australia and Foreign Exchange Administrator for 
Caterpillar EAME in Geneva.  Other assignments in Corporate Treasury include 
Human Resources Manager, Risk Administrator, Machine Orders Analyst and a 
variety of Finance Analyst positions. 
 
            
Douglas E. Harris 
Managing Director 
Promontory Financial Group, L.L.C.  

   Mr. Harris is a Managing Director in the New York office 
of Promontory Financial Group, L.L.C., a financial services consulting and advisory firm, 
where he advises clients in regulatory matters involving risk management, compliance, 
investment products, derivatives, capital markets and complex structured transactions, and 
on general corporate governance, internal controls, and strategic advisory matters.   
.   
Formerly, he was the General Counsel and Chief Operating Officer of BrokerTec Futures 
Exchange, L.L.C. and BrokerTec Clearing Company, L.L.C.  Before joining BrokerTec, Mr. 
Harris was a partner in the Regulatory Risk Services Group at Arthur Andersen LLP, where 
he advised commercial and investment banks, hedge funds and futures commission 
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merchants on regulatory, compliance, risk management, derivatives and capital markets 
issues. 
 
From 1993 to 1996, he held the position of Senior Deputy Comptroller for Capital Markets 
at the Office of the Comptroller of the Currency.  He was responsible for the regulation and 
supervision of national bank capital markets activities, including trading, dealing and 
investing in derivatives and emerging markets instruments, as well as the development of risk 
management policies and guidelines.  He also served on the Inter-Agency Task Force on 
Bank-Related Derivatives Activities and as senior staff member of the President’s Working 
Group on Financial Markets. 
 
Previously, Mr. Harris served as Assistant General Counsel of JPMorgan and General 
Counsel of JPMorgan Futures, Inc.   
 
Mr. Harris is a Director of the National Futures Association, the self-regulatory organization 
for the U.S. futures industry, where he is a member of both the Compliance Consultative 
Committee and the Audit Committee.  He is also a member of the Bar Association of the 
City of New York, the New York State Bar Association (Structured Products and 
Derivatives Law Committee), the American Bar Association (Committee on the Regulation 
of Futures and Derivatives), the Law & Compliance Division of the Futures Industry 
Association, and the Financial Markets Association. 
 
Mr. Harris received his AB from Harvard College and his JD from Harvard Law School. 
 
            
Christopher K. Hehmeyer  
Vice-Chairman of the Board  
National Futures Association 

   As CEO of HTG Capital Partners, Mr. Hehmeyer 
provides the strategic direction and leadership for HTG Capital Partners.  Having starter his 
career as a runner on the floor of the Chicago Board of Trade in 1978, Mr. Hehmeyer 
became a full member of the CBOT in 1981 where he was a floor broker, floor trader, 
member of the board of directors, and chaired, vice chaired or served on over 40 
committees at the exchange.  Most recently he was the CEO of Penson GHCO and 
continues to serve as its non-executive chairman. 
  
Mr. Hehmeyer was one of the founding partners of Goldenberg, Hehmeyer & Co and 
worked as a managing director of the Virginia Trading Corporation beginning in 1981 and 
prior to establishment of the GHCO partnership in 1984. 
  
In addition to his duties as CEO, Mr. Hehmeyer serves as vice chairman of the board of 
directors of the National Futures Association and as vice chairman of the board of the 
Futures Industry Association. 
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He is a member of the advisory board for the Master of Science of Financial Engineering 
Program at Kent State University, the Economics Club of Chicago, and the World 
Presidents' Organization.  
  
Mr. Hehmeyer has served on a variety of local charity boards including chairman of the 
exchange chapter of Ducks Unlimited and chairman of the annual LaSalle Street Dinner 
Dance for the Chicago Area Council of the Boy Scouts of America. 
 
            
Steven A. Joachim 
Executive Vice President of Transparency Services  
Financial Industry Regulatory Authority (FINRA) 

   Mr. Joachim is the Executive Vice President of 
Transparency Services at FINRA.  His responsibilities include the Alternative Display 
Facility, FINRA’s listed equity quote and trade reporting vehicle; the Trade Reporting 
Facilities, FINRA’s joint ventures with Exchanges for printing listed equity trades; and the 
Over The Counter Equity transparency facilities, including OTC Bulletin Board and 
TRACE, the FINRA facility for reporting corporate bond trades.   
 
Prior to his arrival at FINRA in 2002, Mr. Joachim was the Senior Vice President, Chief 
Operating Officer, Chief Strategy Officer and General Manager for Plural from 1997 to 
2001.  Plural was a custom interactive software development and strategy firm and is now 
owned by Dell Professional Services.  In 1983, he began a nearly 15-year stint with Merrill 
Lynch.  During his career at Merrill Lynch he served as head of Institutional Marketing, First 
Vice President, Business Architect for Capital Markets and Chief Technology Officer for 
Global Equity Markets, Director, Floor Brokerage Services and Business Manager, Global 
Equity Trading. Throughout his career at Merrill, he has managed operations in Asia, 
Europe and the U.S.  From 1981 to 1983, Mr. Joachim worked for Bankers Trust Company 
as Vice President, Area Consultant for Lending and Money Transfer Operations.  He also 
served as a Managing Consultant with Cresap McCormick and Paget, Inc.  
 
Mr. Joachim is the current Chairman of the International Forum for Investor Education and 
has served as a member of the Philadelphia Stock Exchange Board of Governors, Board of 
Directors for Merrill Lynch Specialists, Inc. and Board of Directors for Wilco, Inc.  He has 
also been a member of the Nasdaq Industry Advisory Committee and the American Stock 
Exchange Upstairs Member Advisory Committee. 
 
Mr. Joachim has an MA in Political Science from Duquesne University in Pittsburgh, PA, 
and an MS with distinction in Public Management and a BS in Mathematics from Carnegie 
Mellon University in Pittsburgh, PA. 
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Peter G. Johnson 
Managing Director of Futures & Options 
J.P. Morgan 
 
Mr. Johnson is the Managing Director and Global Co-Head of Futures and Options and 
OTC Clearing for J.P. Morgan Futures Inc.  In March 2010, Mr. Johnson was elected 
treasurer of the Futures Industry Association (FIA).  Mr. Johnson also serves as Chairman of 
the FIA Market Access Working Group. 
 
            
Dr. Albert S. Kyle 
Charles E. Smith Chair Professor of Finance  
University of Maryland 

  Professor Kyle joined the University of Maryland faculty 
as the Charles E. Smith Chair Professor of Finance at the Robert H. Smith School of 
Business in August 2006.  He earned his B.S. degree in mathematics from Davidson College 
in 1974, studied philosophy and economics at Oxford University as a Rhodes Scholar from 
Texas (1974), and completed his Ph.D. in economics at the University of Chicago in 1981.  
He has been a professor at Princeton University’s Woodrow Wilson School (1981-1987), at 
the University of California’s Haas Business School in Berkeley (1987-1992), and at Duke 
University (1992-2006).   
 
Professor Kyle’s research focuses on market microstructure.  His research includes topics 
such as informed speculative trading, market manipulation, price volatility, and the 
information content of market prices, market liquidity, and contagion.  His current research 
also deals with concepts from industrial organization to model the valuation dynamics of 
growth stocks and value stocks by applying techniques used to value real options.   
 
His teaching interests include market microstructure, institutional asset management, venture 
capital and private equity, corporate finance, option pricing, and asset pricing.   
 
He was elected Fellow of the Econometric Society in 2002.  He was a board member of the 
American Finance Association from 2004-2006.  He served as a staff member of the 
Presidential Task Force on Market Mechanisms (Brady Commission), after the stock market 
crash of 1987.  He has been a member of the NASDAQ economic advisory board and the 
FINRA economic advisory board. 
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Garry N. O'Connor 
Chief Executive Officer 
International Derivatives Clearing Group, LLC 

   Mr. O'Connor is the Chief Executive Officer of IDCG.  
Prior to joining IDCG, Mr. O'Connor spent seventeen years in the Investment Banking 
industry, pricing and managing interest rate derivative portfolios.  He has held senior 
positions in Sydney, Tokyo, Hong Kong and New York with Bankers Trust and then Merrill 
Lynch.  During his time at Merrill Lynch, Mr. O'Connor held a number of roles managing 
interest rate derivatives risk including leading the Australasian interest rate derivatives trading 
operation out of Sydney, leading the Japanese Yen swaps desk out of Tokyo, and 
establishing and managing a US Dollar interest rate trading business in Hong Kong. 
 
Most recently he was charged with establishing a North American presence in the European 
derivatives markets.  At Bankers Trust, Mr. O'Connor managed interest rate, foreign 
exchange, and commodities risk in Auckland and in Sydney.  He was also responsible for 
price making and risk management activities in Australian and New Zealand interest rate 
derivatives.  
 
As the CEO of IDCG, Mr. O'Connor has testified on Capitol Hill, met with government 
regulators and spoken at numerous industry forums on the need for central counterparty 
clearing and the benefits of extending clearing to all markets participants.  He previously 
served as IDCG's Chief Product Officer and remains responsible for designing and 
implementing IDCG's cleared interest rate derivative products.  He has used his experience 
as an interest rate trader to design IDCG's product specifications to be economically 
equivalent to over the counter market.  
 
Mr. O'Connor received a BCom (Hons) from Otago University in 1992.  
 
            
Michael Ricks 
Merchandising Manager, North America 
Cargill Inc. 
 
From 1999 to present, Mr. Ricks has been the Merchandising Manager, North America for 
Cargill Incorporated located in Minneapolis, MN.  Prior to that, from 1986-1999 Mr. Ricks 
was at Continental Grain dealing with grain merchandising.  Mr. Ricks received his MS 
Degree, Agricultural Economics, North Dakota State University, Fargo ND in 1986. 
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Matt Schatzman 
Senior Vice President, Energy Marketing 
BG Americas & Global LNG 

  Mr. Schatzman is responsible for marketing BG’s global 
LNG supply, BG’s gas, power and NGL products in North America and BG’s oil 
production in Brazil.  Prior to joining BG, Schatzman worked at Dynegy where his last 
position was president and chief executive officer of Dynegy’s energy marketing and power 
generation business.   
 
Mr. Schatzman holds a Bachelor of Arts degree in political science from Yale University. 
 
            
Thomas Secunda 
Chief Technology Officer 
Bloomberg LP 

   Mr. Secunda, one of the founding partners of Bloomberg, 
has been with the company since its creation in 1982.  Since Bloomberg’s inception, Mr. 
Secunda has served as Director of Research and Development, Director of Worldwide Sales 
and now Director of Financial Products which includes core terminals, trading systems, 
tradebook, and portfolio, analytics and risk. 
 
Prior to joining Bloomberg, Mr. Secunda was a fixed-income trader at Morgan Stanley from 
1981-1982.  Before that he worked in systems research at Salomon Brothers. 
 
Mr. Secunda holds both undergraduate and graduate degrees in mathematics from SUNY 
Binghamton.  He is currently on the Board of Directors of Bloomberg, the National Parks 
Conservation Association both its national board and it’s NYC Council, The Nature 
Conservancy, the Intrepid Museum Foundation and the Westchester County Parks, 
Recreation and Conservation Board. 
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Charles A. Vice 
President and Chief Operating Officer 
IntercontinentalExchange 

           Mr. Vice is a founding member of IntercontinentalExchange 
(NYSE: ICE).  He has served as Chief Operating Officer since July 2001 and President since 
October 2005.  Mr. Vice works with the executive management team in setting corporate 
objectives and strategies and has day-to-day responsibility for technology, operations, and 
product development.  Mr. Vice has been a leader in the management and application of 
information technology in the energy industry for nearly two decades.  Prior to the 
formation of ICE in 2000, Mr. Vice was a Director at Continental Power Exchange (CPEX), 
an electronic spot market for electric power.  Before joining the CPEX startup in 1994, he 
was a Principal at Energy Management Associates, where he provided consulting services to 
the electric power and natural gas industries.  From 1985 to 1988, Mr. Vice was a Systems 
Analyst with Electronic Data Systems (General Motors) where he designed and marketed 
management information systems for auto, airline and financial service industry clients.  
 
Mr. Vice earned a Bachelor of Science degree in Mechanical Engineering from the University 
of Alabama and a Master of Business Administration from the Owen Graduate School of 
Management at Vanderbilt University. 
 
            
Dr. Matthew White 
Senior Economist 
ISO New England, Inc. 

   Dr. White is the Senior Economist at ISO New England.  
His responsibilities include market design and development for ISO New England’s $12 
billion suite of auction-based electricity markets. 
 
Prior to joining the ISO, Dr. White held faculty appointments at the Stanford University 
Graduate School of Business, the University of Chicago (Visiting), and the University of 
Pennsylvania’s Wharton School of Business.  There he received numerous outstanding 
teaching awards for his lectures on how markets work.  Dr. White’s public service includes 
appointments as a senior staff economist to the U.S Federal Trade Commission and the U.S. 
Federal Energy Regulatory Commission.  
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Dr. White was a Faculty Research Fellow for twelve years at the National Bureau of 
Economic Research, the nation’s premier economic think tank.  Dr. White’s expertise 
centers on energy markets and electricity market design, including market microstructure, 
pricing practices, and demand behavior.  His research studies appear in leading academic 
journals, including the Review of Economic Studies, the RAND Journal of Economics, the Review of 
Economics and Statistics, and the Brookings Papers on Economic Activity.  He has served as an 
evaluator and referee for more than 25 peer-reviewed scholarly journals spanning 
economics, engineering, and political science.  He received his Ph.D. in Economics from the 
University of California, Berkeley in 1995. 
 
            
Charles F. Whitman 
Chief Executive Officer 
Infinium Capital Management 

   Mr. Whitman is a founding partner and Chief Executive 
Officer of Infinium Capital Management, a proprietary trading firm based in Chicago with 
additional operations in New York and London.   
 
Mr. Whitman has been involved in the trading industry since 1987 when, at the young age of 
17, he was a runner for Produce Grain Inc.  From 1987 to 1992 he attended DePaul 
University where he double majored in Accounting and Finance.  While at DePaul, in 1988 
he became a clerk in the soybean options pit for Hanley Group.  Mr. Whitman then 
successfully traded full time in the soybean options pit for several years and in 1996 became 
a partner at Hanley Group.  Starting in 1994, while still trading full time and anticipating the 
rise in electronic trading, Mr. Whitman focused on developing methods of trading away 
from the exchange floor.  From 1999-2001 Mr. Whitman conducted in depth market and 
business research for what would become Infinium Capital Management.  During this 
research period, Mr. Whitman also taught options seminars for Dr. Van Tharp and 
mentored and trained several traders that went on to become extremely successful.  In June 
of 2000 Mr. Whitman became a partner at Blink Trading, LLC, which was sold to GETCO 
in 2002.  Since the launch of Infinium 9 years ago, Mr. Whitman has served the firm 
simultaneously as CEO and Head of Macro Trading.  Infinium is widely recognized for its 
integrity and multi asset class presence, is an established leader in working with exchanges to 
develop new products and in 2008 was voted the 4th best place to work in Chicago by 
Crain’s Chicago Business. 
 
Mr. Whitman has been designated a “Super Trader” by Dr. Van Tharp who was featured as 
the premier psychologist in the trading arena in the book Market Wizards.  Mr. Whitman 
authored the foreword in the current edition of Dr. Tharp’s book Trade Your Way to 
Financial Freedom.  Charles Whitman is a longtime member of Chicago Mercantile 
Exchange, Chicago Board of Options Exchange, Kansas City Board of Trade and 
Minneapolis Grain Exchange.  Furthermore, he is a member of the Economic Club of 
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Chicago, the Cato Institute and the Chairman’s Circle of the Chicago Council on Global 
Affairs.  Mr. Whitman was highly influential in the development of a charitable inner-city 
ministry, GRIP Outreach for Youth, where he also served as Chairman of the Board.  He is 
devoted to helping at-risk children and has mentored many middle school and high school 
kids through coaching basketball, one of his lifelong passions.  Mr. Whitman is a substantial 
donor and supporter of several charities including Willow Creek Association, Robin Hood 
Foundation, Christian Heritage Academy, Caris Pregnancy Centers, World Vision and Direct 
Relief International.   
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Algorithmic	  Trading	  and	  High	  Frequency	  Trading	  
Experiences	  from	  the	  Market	  and	  Thoughts	  on	  Regulatory	  Requirements	  

Submission	  to	  CFTC	  TAC	  on	  Algo	  and	  HFT	  
	  

Dr.	  John	  Bates	  
CTO,	  Progress	  Software	  and	  Founder,	  Apama	  

	  
	  

Background	  
This	  document	  is	  divided	  into	  2	  sections:	  firstly	  it	  reviews	  the	  drivers	  and	  trends	  in	  
Algo	  and	  HFT;	  secondly	  it	  discusses	  the	  topic	  of	  regulation	  with	  specific	  regard	  to	  
the	  CFTC,	  Algo	  and	  HFT.	  I’ve	  been	  very	  fortune,	  as	  the	  Founder	  of	  Apama	  (one	  of	  the	  
leading	  platforms	  for	  Algo	  and	  HFT,	  liquidity	  aggregation,	  smart	  order	  routing,	  pre-‐
trade	  risk	  and	  market	  surveillance)	  to	  be	  involved	  in	  working	  for	  the	  last	  10	  years	  
with	  leading	  sell-‐side	  and	  buy-‐side	  firms,	  trading	  venues	  and,	  more	  recently,	  
regulators.	  I’ve	  seen	  Algo	  and	  HFT	  evolve	  in	  many	  interesting	  ways	  and	  I	  wanted	  to	  
try	  to	  capture	  some	  of	  the	  trends,	  which	  also	  motivate	  my	  views	  of	  the	  regulatory	  
requirements	  going	  forward.	  	  
	  

Algorithmic	  Trading	  Terminology	  
The	  term	  algorithmic	  trading	  is	  not	  used	  consistently	  in	  the	  industry	  (sometimes	  it	  
is	  used	  generally	  and	  sometimes	  to	  describe	  execution-‐only	  strategies	  or	  broker	  
algorithms	  –	  see	  below).	  An	  algorithm	  is	  “a	  sequence	  of	  steps	  to	  achieve	  a	  goal”	  –	  
and	  the	  general	  case	  of	  algorithmic	  trading	  is	  “using	  a	  computer	  to	  automate	  a	  
trading	  strategy”.	  In	  almost	  all	  cases,	  algorithms	  encode	  what	  traders	  could	  do	  by	  
watching	  the	  market	  and	  manually	  placing	  orders.	  The	  difference	  is	  that	  algos	  don’t	  
need	  a	  lunch	  break	  or	  a	  paycheck!	  It	  takes	  tens	  of	  milliseconds	  for	  a	  trader’s	  eye	  to	  
take	  in	  information,	  communicate	  with	  the	  brain,	  a	  decision	  to	  be	  made	  and	  the	  
brain	  impulse	  to	  go	  from	  a	  trader’s	  brain	  to	  operate	  his/her	  fingers	  to	  trade.	  In	  that	  
time	  algorithms	  can	  have	  made	  and	  executed	  thousands	  of	  trading	  decisions.	  
	  
There	  are	  2	  main	  ways	  in	  which	  algorithms	  are	  used	  to	  automate	  trading:	  
algorithms	  for	  execution	  and	  algorithms	  for	  HFT.	  	  
	  

Execution	  Algorithms	  
Execution	  algorithms	  are	  used	  to	  break	  down	  large	  orders	  and	  slice	  them	  into	  the	  
market	  over	  a	  period	  of	  time.	  The	  goal	  is	  to	  minimize	  the	  impact	  that	  a	  large	  order	  
has	  in	  the	  market	  and	  to	  achieve	  a	  benchmarked	  price.	  Examples	  of	  this	  include	  the	  
VWAP	  (Volume	  Weighted	  Average	  Price)	  and	  Market	  Participation	  algos.	  These	  
algorithms	  use	  metrics	  to	  determine	  how	  to	  slice	  a	  large	  order;	  for	  example,	  VWAP	  
uses	  the	  historic	  volume	  distribution	  for	  a	  particular	  symbol	  over	  the	  course	  of	  a	  
day	  and	  divides	  the	  order	  into	  slices,	  proportioned	  to	  this	  distribution.	  



	  
The	  typical	  use	  of	  an	  execution	  algorithm	  is	  the	  buyside	  sending	  an	  order	  to	  be	  
executed	  algorithmically	  into	  a	  broker.	  This	  can	  be	  done	  either	  by	  phone	  or	  in	  an	  
automatic	  way	  from	  a	  buyside	  Execution	  Management	  System	  (EMS)	  as	  a	  FIX	  order.	  
The	  buyside	  provides	  all	  the	  information,	  such	  as	  instrument,	  side,	  quantity	  and	  the	  
algorithm	  to	  use.	  An	  instance	  of	  the	  execution	  algorithm	  is	  then	  instantiated	  within	  
the	  broker	  environment	  to	  trade	  the	  order.	  It	  is	  also	  possible	  to	  run	  these	  algorithms	  
within	  the	  buyside	  and	  just	  send	  the	  child	  orders	  straight	  to	  the	  market	  through	  
DMA	  (direct	  market	  access).	  To	  achieve	  this	  some	  EMS	  systems	  have	  built-‐in	  
algorithms	  and	  some	  institutions	  have	  built	  their	  own	  algorithms	  using	  technologies	  
such	  as	  Complex	  Event	  Processing	  (CEP	  (described	  later)).	  
	  

High	  Frequency	  Trading	  Algorithms	  
While	  execution	  algorithms	  are	  about	  automating	  “how	  to	  trade”	  –	  i.e.	  how	  to	  place	  
orders	  in	  the	  market,	  HFT	  algorithms	  add	  to	  this	  “when	  to	  trade”	  and	  even	  
sometimes	  “what	  to	  trade”.	  	  Execution	  algorithms	  are	  about	  minimizing	  market	  
impact	  and	  trying	  to	  ensure	  a	  fair	  price,	  whereas	  HFT	  algorithms	  are	  about	  profit.	  
The	  “high	  frequency”	  refers	  to	  being	  able	  to	  keep	  up	  with	  the	  high	  frequency	  
streams	  of	  data,	  make	  decisions	  based	  on	  patterns	  in	  that	  data	  indicating	  possible	  
trading	  opportunities,	  and	  automatically	  place	  and	  manage	  orders	  in	  the	  market	  to	  
capitalize.	  	  
	  
A	  term	  commonly	  associated	  with	  HFT	  is	  statistical	  arbitrage	  (or	  “statarb”)	  –	  
monitoring	  instruments	  that	  are	  known	  to	  be	  statistically	  correlated,	  with	  the	  goal	  
of	  detecting	  breaks	  in	  the	  correlation	  -‐	  indicating	  trading	  opportunities.	  For	  
example,	  consider	  the	  relationship	  (called	  the	  delta	  1:1)	  between	  a	  bond,	  such	  as	  the	  
10-‐year	  govvie	  on	  ICAP	  (Brokertec),	  and	  a	  derivative	  of	  it	  on	  CBOT.	  These	  
instruments	  tend	  to	  move	  together	  –	  but	  if	  that	  relationship	  breaks	  for	  a	  few	  
milliseconds	  then	  there	  is	  an	  opportunity	  to	  buy	  one	  and	  sell	  the	  other	  at	  a	  profit.	  
There	  are	  a	  variety	  of	  types	  of	  HFT	  algorithms	  for	  statarb,	  including	  the	  following:	  
	  
• Pairs	  trading	  -‐	  looking	  for	  breaks	  in	  the	  correlated	  relationships	  between	  pairs	  of	  

instruments.	  
	  
• Index	  arbitrage	  -‐	  monitoring	  for	  breaks	  in	  the	  correlated	  relationships	  between	  

instruments	  and	  the	  index	  of	  its	  sector,	  e.g.	  Ford	  against	  the	  automotive	  sector,	  
or	  a	  stock	  index	  future	  against	  one	  or	  more	  of	  its	  underlying	  component	  
elements.	  

	  
• Basket	  trading	  -‐	  in	  which	  statarb	  techniques	  are	  applied	  not	  with	  individual	  

instruments	  but	  with	  custom	  baskets	  of	  instruments.	  
	  
• Spread	  trading	  -‐	  a	  related	  form	  of	  statarb	  that	  is	  particularly	  popular	  in	  the	  

futures	  market.	  In	  spread	  trading,	  trading	  is	  based	  on	  taking	  positions,	  usually	  
one	  long	  and	  one	  short,	  on	  instruments	  with	  profitability	  being	  determined	  by	  



the	  spread	  (difference)	  between	  two.	  Examples	  include	  the	  purchase	  of	  July	  Corn	  
and	  the	  sale	  of	  December	  Corn	  (intra-‐market	  spread),	  the	  purchase	  of	  February	  
Lean	  Hogs	  and	  the	  sale	  of	  February	  Live	  Cattle	  (inter-‐market	  spread),	  and	  the	  
purchase	  of	  March	  Kansas	  City	  Wheat	  and	  the	  sale	  of	  March	  Chicago	  Wheat	  
(inter-‐exchange	  spread).	  More	  complex	  inter-‐exchange	  multi-‐legged	  spreads	  
include	  crack	  spreads:	  trading	  the	  differential	  between	  the	  price	  of	  crude	  oil	  and	  
petroleum	  products,	  spark	  spreads:	  trading	  the	  theoretical	  gross	  margin	  of	  a	  gas-‐
fired	  power	  plant	  from	  selling	  a	  unit	  of	  electricity,	  having	  bought	  the	  fuel	  
required	  to	  produce	  this	  unit	  of	  electricity	  (and	  including	  all	  other	  costs	  
operation	  and	  maintenance,	  capital	  and	  other	  financial	  costs)	  and	  crush	  spreads:	  
involving	  the	  purchase	  of	  soybean	  futures	  and	  the	  sale	  of	  soybean	  oil	  and	  
soybean	  meal	  futures.	  

	  
In	  multi-‐instrument	  HFT	  strategies,	  low	  latency	  is	  very	  important	  –	  in	  order	  to	  see	  
the	  patterns	  in	  the	  market	  and	  execute	  trades	  before	  competitors.	  This	  is	  
particularly	  relevant	  in	  placing	  multiple	  trades	  as	  part	  of	  a	  statarb	  scenario	  –	  a	  so-‐
called	  multi-legged	  trade	  –	  where	  each	  trade	  is	  a	  leg.	  Firstly	  it	  is	  important	  to	  act	  on	  
the	  liquidity	  opportunity	  seen	  in	  the	  market;	  thus	  fast	  reaction	  is	  important	  before	  a	  
competitor	  takes	  the	  opportunity.	  And	  secondly,	  it	  is	  important	  not	  to	  get	  “legged	  
out”	  –	  where	  one	  leg	  of	  the	  strategy	  executes	  but	  other	  legs	  find	  the	  market	  has	  
moved	  and	  the	  opportunity	  is	  lost.	  There	  are	  of	  course	  mitigating	  actions	  that	  can	  be	  
taken	  here,	  either	  automatically	  or	  manually.	  
	  
HFT	  algos	  are	  typically	  used	  in	  bank	  proprietary	  trading	  groups,	  hedge	  funds	  and	  
proprietary	  trading	  firms.	  Instances	  of	  specific	  trading	  strategies	  can	  be	  instantiated	  
by	  providing	  key	  parameters	  -‐	  for	  example:	  a	  new	  pairs	  trading	  strategy	  needs	  to	  
know	  the	  instruments	  and	  specific	  trading	  thresholds.	  Once	  initiated,	  HFT	  algos	  
often	  run	  with	  little	  human	  intervention.	  Often	  traders	  monitor	  the	  status,	  P&L	  and	  
other	  key	  parameters	  on	  real-‐time	  dashboards	  and	  can	  intervene	  when/if	  they	  feel	  
it	  is	  necessary.	  In	  the	  case	  of	  spread	  trading,	  specialized	  tools	  called	  Spreaders	  are	  
often	  used	  by	  traders	  to	  instantiate	  and	  manage	  spread	  trading.	  
	  
The	  above	  HFT	  algo	  types	  are	  a	  subset	  of	  the	  algos	  in	  the	  market	  but	  illustrate	  many	  
of	  the	  principles.	  A	  selection	  of	  other	  areas	  in	  which	  high	  frequency	  algorithmic	  
techniques	  are	  used	  include	  the	  following:	  
	  
• Liquidity	  aggregation	  and	  smart	  order	  routing	  -‐	  As	  market	  fragmentation	  has	  

continued,	  algorithmic	  techniques	  have	  been	  employed	  to	  aggregate	  liquidity	  
and	  use	  smart	  order	  routing	  to	  send	  orders	  to	  the	  venues	  with	  the	  best	  price	  and	  
liquidity.	  These	  techniques	  (described	  below	  in	  more	  detail)	  can	  be	  used	  by	  HFT	  
algos	  to	  operate	  more	  effectively	  in	  a	  fragmented	  environment.	  	  

	  
• Real-‐time	  pricing	  of	  instruments	  -‐	  Algorithmic	  techniques	  have	  also	  been	  used	  in	  

the	  real-‐time	  pricing	  of	  instruments,	  such	  as	  bonds,	  options	  and	  foreign	  
exchange.	  Traditional	  pricing	  techniques	  use	  slower-‐moving	  pricing	  analytics	  



and	  fundamentals	  to	  price	  instruments.	  However,	  now	  higher	  frequency	  
algorithmic	  techniques	  can	  enhance	  these	  pricing	  algorithms	  based	  on	  what	  is	  
happening	  in	  the	  aggregated	  market	  (i.e.	  how	  can	  we	  make	  money	  by	  increasing	  
the	  spread	  on	  liquidity	  available)	  and	  the	  tier	  and	  history	  of	  the	  customer	  for	  
whom	  we	  are	  publishing	  the	  price	  (i.e.	  how	  should	  be	  adjust	  the	  spread	  based	  on	  
how	  important	  the	  customer	  is).	  High	  frequency	  pricing	  can	  thus	  skew	  prices	  
and	  spreads	  based	  on	  the	  up-‐to-‐millisecond	  view	  from	  the	  market	  and	  the	  tier	  of	  
the	  customer.	  

	  
• Trading	  on	  news	  -‐	  In	  the	  last	  couple	  of	  years,	  there	  has	  been	  increasing	  interest	  

from	  HFT	  firms	  in	  incorporating	  news	  into	  HFT	  algos.	  The	  idea	  here	  is	  that	  firms	  
can	  trade	  automatically	  on	  news	  sentiment	  before	  a	  human	  trader	  can	  react,	  e.g.	  
economic	  releases,	  news	  of	  a	  war,	  unexpected	  weather	  events	  etc.	  They	  can	  also	  
correlate	  and	  respond	  to	  patterns,	  e.g.	  the	  way	  that	  news	  impacts	  price	  
movements.	  For	  a	  number	  of	  years	  a	  handful	  of	  highly	  innovative	  firms	  have	  
been	  experimenting	  with	  news	  in	  HFT.	  Now,	  however,	  this	  interest	  is	  growing	  
due	  to	  new	  types	  of	  structured	  high	  frequency	  news	  feeds.	  News	  providers,	  such	  
as	  Thomson-‐Reuters	  and	  Dow-‐Jones	  are	  including	  tags	  in	  the	  feeds	  that	  enable	  
algos	  to	  quickly	  extract	  key	  information,	  such	  as	  data	  associated	  with	  an	  
economic	  release.	  

	  
• Genetic	  tuning	  -‐	  Another	  interesting	  technique	  is	  genetic	  tuning	  –	  in	  which	  many	  

thousands	  of	  permutations	  of	  algorithms	  are	  run	  in	  parallel	  and	  fed	  with	  real	  
market	  data	  but	  are	  not	  necessarily	  trading	  live	  in	  the	  market.	  The	  algorithms	  
that	  have	  the	  most	  profitable	  theoretical	  P&L	  can	  be	  put	  into	  the	  market	  to	  trade	  
live.	  Over	  time	  live	  algos	  may	  become	  less	  profitable	  and	  can	  be	  deactivated.	  The	  
branches	  of	  profitable	  algorithms	  can	  be	  grown	  and	  the	  less	  profitable	  branches	  
killed	  off.	  This	  model	  of	  Darwinian	  trading	  allows	  self-‐evolving	  systems	  to	  
discover	  profitable	  opportunities	  through	  evolutionary	  processes,	  with	  some	  
seeding	  and	  guidance	  by	  human	  experts.	  These	  techniques	  are	  still	  exploratory	  
and	  are	  still	  only	  used	  in	  a	  few	  advanced	  firms.	  

	  
The	  Holy	  Grail	  of	  Algo	  and	  HFT	  is	  the	  “money	  machine”	  –	  an	  algorithm	  that	  figures	  
out	  what	  to	  trade	  and	  the	  strategy	  to	  trade	  it,	  and	  then	  continuously	  self-‐evolves	  to	  
remain	  profitable	  and	  outwit	  competitors.	  While	  there	  are	  many	  semi-‐smart	  
algorithms	  out	  there,	  most	  still	  require	  human	  expertise	  and	  oversight.	  We	  are	  not	  
yet	  at	  the	  stage	  of	  truly	  intelligent	  algorithms,	  although	  it	  is	  inevitable	  this	  is	  where	  
the	  market	  is	  aiming	  for	  and	  we	  must	  be	  prepared	  for	  this.	  
	  

The	  Latency	  War	  
In	  all	  forms	  of	  algo	  trading	  –	  but	  particularly	  in	  HFT,	  minimizing	  latency	  is	  a	  key	  
factor	  in	  success.	  Specifically,	  trading	  groups	  are	  concerned	  with	  end-to-end	  latency	  
–	  the	  total	  delay	  from	  the	  market	  data	  being	  generated	  at	  the	  trading	  venue(s),	  
being	  delivered	  to	  an	  algo,	  a	  decision	  being	  taken	  by	  an	  algo	  and	  the	  necessary	  
orders	  being	  placed	  and	  filled	  in	  the	  venue(s).	  When	  several	  firms	  are	  competing	  for	  



the	  same	  opportunity,	  the	  one	  with	  the	  lowest	  latency	  wins.	  There	  is	  a	  lot	  more	  to	  
Algo	  and	  HFT	  than	  just	  latency	  –	  as	  described	  below	  –	  but	  clearly	  latency	  is	  very	  
important.	  There	  are	  several	  components	  in	  the	  low	  latency	  value	  chain	  including:	  
	  
• Market	  data	  –	  traditionally	  firms	  like	  Thomson-‐Reuters	  were	  the	  preferred	  one-‐

stop-‐shop	  way	  of	  delivering	  market	  data.	  However,	  market	  data	  intermediaries	  
can	  add	  significant	  latency	  and	  firms	  focused	  on	  HFT	  are	  interested	  in	  
connecting	  directly	  to	  the	  trading	  venues	  through	  their	  market	  data	  APIs	  
(Application	  Programming	  Interfaces).	  Market	  data	  firms	  have	  responded	  by	  
creating	  lower	  latency	  versions	  of	  their	  products	  and	  new	  vendors	  have	  
emerged	  such	  as	  Wombat	  (acquired	  by	  NYSE)	  and	  ActivFinancial.	  
	  

• Algo	  &	  HFT	  Engine	  –	  the	  traditional	  approach	  in	  top	  tier	  firms	  was	  to	  hire	  the	  top	  
talent	  and	  hand-‐build	  algorithms	  in-‐house	  using	  a	  traditional	  programming	  
language,	  such	  as	  C++.	  These	  algorithms	  would	  be	  tuned	  to	  minimize	  latency	  in	  
response	  to	  patterns	  in	  market	  data.	  However,	  with	  the	  requirement	  for	  quicker	  
time-‐to-‐market	  of	  new	  algorithms,	  new	  technologies,	  such	  as	  Complex	  Event	  
Processing	  (CEP)	  –	  which	  combine	  rapid	  development	  with	  low	  latency	  response	  
to	  complex	  patterns	  in	  market	  data	  have	  become	  popular.	  

	  
• Order	  execution	  –	  In	  recent	  years,	  many	  trading	  venues	  have	  adopted	  the	  FIX	  

protocol	  as	  the	  standard	  way	  to	  place	  orders.	  In	  order	  to	  minimize	  latency	  many	  
institutions	  connect	  directly	  to	  the	  venues	  and	  place	  and	  manage	  order	  over	  FIX.	  	  

	  
• Physical	  connection	  –	  Some	  firms	  have	  become	  focused	  on	  the	  physics	  of	  

reducing	  latency	  –	  making	  the	  wire	  connection	  over	  which	  market	  data	  and	  
orders	  are	  transmitted	  as	  short	  as	  possible.	  There	  are	  a	  number	  of	  suppliers,	  
such	  as	  BT-‐Radianz,	  that	  can	  provide	  a	  dedicated	  network	  that	  is	  already	  wired	  
into	  trading	  venues	  around	  the	  world.	  

	  
• Co-‐location	  –	  At	  the	  extremes	  of	  reducing	  the	  latency	  physics	  is	  co-‐location,	  in	  

which	  algorithms	  are	  actually	  installed	  next	  to	  or	  in	  the	  facilities	  of	  a	  trading	  
venue.	  Several	  hosting	  companies	  have	  built	  businesses	  around	  providing	  
hosting	  platforms	  to	  allow	  trading	  firms	  to	  install	  their	  software	  in	  these	  co-lo	  
facilities.	  The	  challenge	  with	  co-‐lo	  comes	  for	  firms	  that	  run	  cross-‐market,	  cross-‐
asset	  or	  cross-‐border	  algorithms	  –	  which	  might	  involve	  trading	  with	  multiple	  
trading	  venues	  that	  are	  not	  geographically	  co-‐located.	  Where	  does	  one	  put	  these	  
algorithms?	  Usually	  at	  a	  location	  with	  fast	  inter-‐connect	  to	  all	  the	  necessary	  
venues.	  

	  

Rapid	  Alpha	  Discovery,	  Authoring	  and	  Customization	  
In	  general,	  customization	  of	  algorithms	  has	  been	  a	  key	  differentiator	  to	  both	  brokers	  
that	  offer	  execution	  algorithms	  and	  to	  HFT	  shops.	  The	  principle	  behind	  this	  is	  that	  if	  
everyone	  has	  the	  same	  algorithms	  then	  there	  is	  no	  competitive	  advantage.	  In	  
practice	  there	  isn’t	  a	  tremendous	  difference	  between	  different	  broker’s	  VWAP	  



algorithms	  or	  different	  prop	  shop’s	  pairs	  trading	  algorithm	  –	  but	  each	  firm	  usually	  
has	  their	  own	  “secret	  sauce”	  that	  makes	  the	  algorithm	  slightly	  different.	  There	  are	  
also	  obscure	  algo	  approaches	  that	  are	  unique	  to	  individual	  firms	  and	  are	  closely	  
guarded	  secrets.	  	  
	  
A	  key	  statistic	  to	  note,	  from	  research	  by	  the	  analyst	  firm	  Aite	  Group,	  is	  that	  the	  
average	  lifespan	  of	  an	  algorithm	  is	  3	  months.	  This	  indicates	  the	  pace	  of	  change	  in	  the	  
market.	  In	  fact,	  during	  the	  highly	  volatile	  markets	  of	  late	  2008,	  some	  firms	  changed	  
their	  algorithms	  on	  a	  daily	  basis	  –	  to	  anticipate	  and	  respond	  to	  daily	  opportunities.	  
	  
In	  addition	  to	  the	  run-‐time	  concerns	  around	  minimizing	  latency	  (described	  above)	  
there	  are	  also	  equally	  important	  concerns	  around	  rapid	  research	  and	  development	  
of	  new	  algorithms	  and	  customization	  of	  existing	  algorithms.	  The	  reasons	  for	  this	  are	  
as	  follows:	  
	  
• First-‐mover	  advantage	  -‐	  The	  markets	  change	  all	  the	  time	  and	  new	  patterns	  that	  

offer	  potential	  to	  build	  algorithms	  around	  emerge.	  It’s	  key	  to	  be	  able	  to	  build,	  
test	  and	  deploy	  a	  new	  algorithm	  quickly	  because	  competitors	  may	  have	  spotted	  
the	  same	  opportunity	  and	  be	  trying	  to	  trade	  on	  it	  first.	  

	  
• Adapting	  to	  change	  -‐	  Changes	  in	  the	  market	  can	  also	  impact	  the	  effectiveness	  of	  

existing	  algorithms.	  For	  example,	  a	  HFT	  algo	  that	  was	  trading	  on	  a	  phenomenon	  
that	  only	  one	  firm	  had	  spotted	  initially,	  may	  not	  be	  effective	  any	  more	  because	  
various	  competitors	  have	  spotted	  the	  pattern	  and	  are	  mining	  it	  more	  effectively.	  
Thus	  the	  original	  HFT	  algo	  might	  now	  be	  ineffective	  or	  even	  loss	  making.	  In	  this	  
case	  it’s	  important	  to	  be	  able	  to	  either	  detect	  this	  quickly	  and	  then	  switch	  it	  off	  
or	  customize	  the	  algo	  to	  improve	  it.	  

	  
• Reverse	  engineering	  –	  There	  is	  a	  fear	  in	  the	  market	  that	  competitors	  can	  watch	  

the	  pattern	  of	  orders	  from	  a	  particular	  market	  participant,	  figure	  out	  how	  their	  
algorithms	  work	  (so-‐called	  reverse	  engineering)	  and	  then	  create	  algorithms	  to	  
out-‐perform	  them.	  An	  occasional	  fear	  that	  the	  buy-‐side	  firms	  have	  is	  that	  their	  
brokers’	  prop	  desks	  are	  reverse	  engineering	  and	  then	  front-‐running	  their	  orders.	  
Of	  course	  this	  would	  be	  a	  breach	  of	  regulation	  and	  brokers	  are	  careful	  to	  ensure	  
it	  doesn’t	  happen	  –	  but	  nonetheless	  the	  fear	  remains.	  

	  
The	  requirement	  for	  customization	  and	  continuous	  innovation	  is	  why	  there	  is	  not	  a	  
large	  market	  for	  vendors	  of	  shrink-‐wrapped	  pre-‐built	  algorithms.	  However,	  there	  is	  
a	  market	  for	  techniques	  to	  assist	  in	  the	  rapid	  creation	  and	  customization	  of	  
algorithms.	  Trading	  is	  an	  intellectual	  property	  business	  and	  often	  the	  differences	  in	  
algorithms	  can	  be	  the	  competitive	  advantage	  of	  one	  firm	  over	  another.	  
	  
The	  main	  areas	  of	  interest	  in	  rapid	  development	  and	  customization	  of	  algorithms	  
are	  as	  follows:	  
	  



• Alpha	  Discovery	  –	  Looking	  for	  new	  patterns	  in	  the	  market	  that	  might	  be	  viable	  to	  
trade	  on.	  Commercial	  tools	  exist	  to	  assist	  with	  this	  process	  but	  also	  many	  
homegrown	  tools	  and	  techniques	  are	  used.	  

	  
• Algorithm	  Authoring	  and	  Customization	  –	  Turning	  a	  discovered	  pattern	  into	  an	  

algorithm	  that	  can	  trade	  in	  the	  market	  and	  then	  being	  able	  to	  evolve	  that	  
algorithm	  over	  time.	  There	  are	  a	  number	  of	  approaches	  here.	  A	  traditional	  
approach	  of	  using	  an	  army	  of	  developers	  to	  code	  a	  strategy.	  This	  has	  a	  number	  of	  
problems,	  including	  slow	  time-‐to-‐market,	  frequently	  not	  coming	  up	  with	  the	  
strategy	  the	  business	  wants	  and	  creating	  a	  spaghetti	  code	  maintenance	  
nightmare	  that	  can	  only	  be	  understood	  by	  certain	  people	  who	  then	  may	  leave	  
and	  create	  a	  potential	  hazard	  in	  the	  market.	  The	  term	  black	  box	  describes	  an	  
algorithm	  the	  workings	  of	  which	  are	  hidden.	  In-‐house	  build	  often	  creates	  a	  black	  
box	  –	  only	  understood	  by	  a	  few	  technical	  wizards.	  Becoming	  popular	  is	  the	  
concept	  of	  a	  white	  box	  algorithm	  –	  which	  is	  built	  on	  a	  model,	  the	  logic	  of	  which	  
can	  be	  designed	  by	  and	  is	  clearly	  visible	  to	  the	  business	  and	  can	  be	  easily	  
changed.	  Modeling	  tools	  enable	  a	  strategy	  to	  be	  laid	  out	  in	  terms	  of	  state	  flow,	  
rules	  and	  analytics.	  Such	  tools	  can	  generate	  an	  executable	  strategy	  that	  can	  be	  
loaded	  into	  an	  algo	  engine.	  The	  model	  can	  be	  easily	  changed	  at	  any	  point.	  

	  
• Backtesting	  and	  Simulation	  –	  Backtesting	  involves	  using	  recorded	  historic	  data	  to	  

determine	  how	  an	  algorithm	  performs	  under	  certain	  market	  conditions.	  This	  can	  
range	  from	  a	  bull	  market	  to	  a	  bear	  market	  and	  can	  use	  test	  data	  from	  days	  with	  
certain	  known	  phenomena,	  such	  as	  a	  non-‐farm	  payrolls	  release	  (or	  other	  
economic	  releases)	  or	  even	  the	  flashcrash.	  Simulation	  involves	  providing	  
simulated	  markets	  for	  the	  algorithms	  to	  put	  their	  orders	  into.	  Simulators	  can	  be	  
designed	  to	  work	  hand-‐in-‐hand	  with	  backtesting	  environments	  to,	  for	  example,	  
simulate	  the	  market	  impact	  of	  trades	  (because	  of	  course	  we	  are	  replaying	  
historic	  information	  when	  the	  trades	  we’re	  generating	  didn’t	  really	  happen).	  
Different	  firms	  vary	  in	  their	  approaches	  to	  simulation	  and	  backtesting.	  Some	  use	  
complex	  backtesting	  and	  simulation;	  some	  use	  simulated	  markets	  as	  provided	  by	  
trading	  venues	  before	  going	  live;	  some	  prefer	  iterative	  testing	  in	  live	  markets.	  

	  
• Production	  –	  Putting	  an	  algorithm	  into	  production	  involves	  making	  it	  live	  –	  so	  

that	  it	  is	  receiving	  real	  market	  data,	  making	  trading	  decisions	  and	  placing	  actual	  
orders	  in	  the	  market.	  Usually	  algorithms	  need	  to	  be	  certified,	  based	  on	  a	  firm’s	  
internal	  certification	  procedures,	  before	  they	  are	  put	  into	  production.	  This	  often	  
involves	  extensive	  backtesting	  and	  simulation	  and	  often	  some	  trader	  user	  
acceptance	  testing	  with	  some	  selected	  early-‐adopter	  traders.	  Most	  trading	  
groups	  feel	  backtesting	  and	  simulation	  are	  not	  a	  substitute	  for	  real	  usage	  –	  and	  
often	  reality	  presents	  scenarios	  that	  were	  not	  considered	  in	  backtesting.	  This	  is	  
why	  real-‐time	  pre-‐trade	  risk	  precautions	  should	  be	  built	  into	  all	  algorithmic	  
platforms	  to	  provide	  additional	  protection	  against	  unforeseen	  circumstances.	  

	  



• Analysis	  and	  Tuning	  –	  Once	  an	  algorithm	  has	  been	  running	  live,	  its	  performance	  
can	  be	  analyzed	  to	  detect	  ways	  in	  which	  it	  can	  be	  optimized	  to	  be	  made	  more	  
profitable,	  more	  efficient	  or	  respond	  more	  intelligently	  to	  certain	  risk	  scenarios.	  
This	  continuous	  analysis	  may	  also	  discover	  that	  an	  HFT	  algo	  is	  no	  longer	  
profitable	  enough	  and	  should	  be	  modified	  or	  discontinued.	  

	  

The	  Continuing	  Evolution	  of	  Algo	  and	  HFT	  
One	  can	  liken	  Algo	  and	  HFT	  to	  gold	  mining.	  When	  gold	  is	  discovered	  in	  a	  new	  
territory	  it’s	  often	  lying	  around	  on	  the	  surface.	  When	  more	  people	  hear	  about	  the	  
gold,	  a	  goldrush	  ensues	  and	  everyone	  descends	  upon	  the	  territory.	  Then	  one	  has	  to	  
pan	  for	  gold	  in	  rivers	  or	  dig	  to	  find	  the	  hidden	  seams	  of	  gold.	  In	  Algo	  and	  particularly	  
HFT,	  trading	  firms	  are	  always	  seeking	  out	  new	  opportunities	  and	  trying	  to	  mine	  
them	  before	  others	  descend	  upon	  them.	  
	  
Some	  key	  drivers	  in	  the	  evolution	  of	  Algo	  and	  HFT	  are	  as	  follows:	  
	  
• Asset	  Class	  –	  Initially	  exchange-‐traded	  equities	  and	  futures	  markets	  were	  the	  

focus.	  However,	  as	  FX	  and	  bond	  markets	  have	  become	  increasingly	  electronic,	  
open	  and	  fragmentation,	  so	  Algo	  and	  HFT	  have	  grown	  there.	  More	  recently,	  HFT	  
involving	  energy	  trading	  has	  been	  becoming	  more	  popular.	  Throughout	  this	  
evolution,	  some	  firms	  have	  employed	  algos	  that	  incorporate	  cross-‐asset	  class	  
trading	  for	  statistical	  arbitrage	  and	  hedging	  purposes.	  
	  

• Fragmentation	  –	  As	  new	  markets	  have	  emerged,	  so	  algorithmic	  techniques	  have	  
evolved	  to	  capitalize.	  Many	  asset	  classes	  have	  experienced	  fragmentation	  and	  
this	  trend	  across	  all	  asset	  classes	  is	  likely	  to	  continue.	  Algorithmic	  techniques	  to	  
manage	  fragmentation	  involve	  liquidity	  aggregation	  and	  smart	  order	  routing.	  
Liquidity	  aggregators	  create	  a	  “super	  book”	  that	  combines	  liquidity	  on	  a	  per	  
symbol	  or	  currency	  pair	  basis.	  This	  offers	  a	  global	  ordered	  view	  of	  market	  depth	  
for	  each	  instrument	  regardless	  of	  which	  trading	  venue	  the	  liquidity	  is	  on.	  For	  
example,	  the	  best	  bid	  for	  a	  Eurodollar	  future	  may	  be	  on	  CME,	  the	  second	  best	  
may	  be	  ELX.	  If	  human	  traders	  or	  algorithms	  trade,	  then	  smart	  order	  routing	  
sends	  the	  order	  to	  the	  relevant	  market(s)	  on	  which	  the	  quote	  is	  displayed.	  Low	  
latency	  and	  rapid	  update	  are	  clearly	  important	  here	  to	  avoid	  dealing	  with	  stale	  
liquidity	  information.	  

	  
FX	  is	  becoming	  of	  increasing	  relevance	  to	  the	  futures	  community	  as	  currency	  
futures	  and	  futures	  equivalents	  are	  being	  aggregated	  in	  FX	  liquidity	  aggregators,	  
combined	  with	  FX-‐specific	  trading	  venues	  and	  bank	  liquidity.	  Also	  FX	  is	  often	  
used	  as	  an	  important	  component	  of	  cross-‐border	  futures	  strategies.	  

	  
• Geography	  –	  Algo	  and	  HFT	  started	  predominantly	  in	  the	  US	  and	  UK	  markets	  but	  

have	  spread	  geographically	  over	  time.	  Firstly	  the	  spread	  was	  to	  other	  major	  
trading	  centers	  such	  as	  Tokyo,	  Sydney,	  Hong	  Kong,	  Toronto	  and	  across	  Europe.	  
Then	  to	  locations	  such	  as	  Korea,	  Singapore	  and	  one	  of	  the	  hottest	  new	  markets	  –	  



Brazil,	  where	  both	  futures	  and	  equities	  are	  now	  widely	  traded	  algorithmically	  on	  
BMF-‐Bovespa.	  At	  each	  stage,	  algos	  have	  to	  be	  specialized	  to	  the	  characteristics	  of	  
the	  local	  markets.	  Each	  new	  market	  presents	  new	  trading	  opportunities.	  

	  

Algo	  and	  HFT	  Platforms	  and	  Technologies	  
Many	  firms	  still	  use	  in-‐house	  development	  for	  the	  custom	  creation	  of	  algos.	  
However,	  due	  to	  the	  need	  to	  create,	  evolve,	  backtest	  and	  tune	  algorithms	  rapidly,	  as	  
well	  as	  keep	  up	  with	  connections	  to	  new	  trading	  venues,	  an	  increasing	  number	  of	  
firms	  are	  using	  third-‐party	  products	  to	  help	  accelerate	  their	  trading	  lifecycle.	  Some	  
key	  technologies	  include	  the	  following:	  
	  
• Execution	  Management	  Systems	  –	  Front-‐end	  trading	  systems	  that	  allow	  access	  to	  

broker	  algorithms	  as	  well	  as	  access	  to	  custom	  algorithms	  integrated	  with	  the	  
EMS.	  Leading	  providers	  include	  FlexTrade,	  Portware	  and	  Orc.	  

	  
• Complex	  Event	  Processing	  –	  A	  platform	  specifically	  designed	  for	  complex	  analysis	  

and	  response	  to	  high	  frequency	  data.	  CEP	  platforms,	  such	  as	  Progress	  Apama,	  
incorporate	  graphical	  modeling	  tools	  that	  can	  rapidly	  capture	  and	  customize	  
strategies	  and	  a	  trading	  engine	  connected	  to	  any	  combination	  of	  cross-‐asset	  
market	  data	  and	  trading	  venues.	  CEP	  is	  used	  widely	  for	  algo	  trading,	  HFT,	  
liquidity	  aggregation,	  smart	  order	  routing,	  pre-‐trade	  risk	  and	  market	  
surveillance.	  

	  
• Tick	  Databases	  –	  A	  real-‐time	  time-‐series	  database	  designed	  to	  capture	  and	  store	  

high	  frequency	  data	  for	  analysis	  and	  backtesting.	  Providers	  include	  Thomson-‐
Reuters	  and	  KX	  Systems.	  

	  

Algo	  and	  HFT	  Safety	  Net	  
HFT	  can	  scale	  the	  capabilities	  of	  a	  trader	  hundreds	  or	  thousands	  of	  times.	  However,	  
this	  can	  of	  course	  increase	  trading	  risk	  too.	  To	  complement	  high	  frequency	  trading,	  
high	  frequency	  pre-‐trade	  risk	  capabilities	  are	  needed.	  Many	  firms	  embraced	  this	  
concept	  some	  time	  ago.	  However,	  certain	  groups	  used	  to	  turn	  off	  their	  pre-‐trade	  risk	  
management	  as	  it	  “slowed	  them	  down”	  and	  any	  potential	  downside	  was	  over-‐
balanced	  by	  the	  potential	  upside	  of	  trading	  first.	  That	  situation	  has	  changed	  after	  the	  
2008	  market	  and	  the	  flashcrash,	  and	  with	  increased	  regulator	  scrutiny.	  
	  
Two	  approaches	  being	  successfully	  used	  to	  mitigate	  trading	  risk	  are:	  
	  
• Real-‐time	  Pre-‐trade	  Risk	  Firewall	  –	  It	  is	  possible	  to	  continuously	  recalculate	  risk	  

exposures	  on	  positions	  whilst	  monitoring	  trades	  as	  they	  go	  to	  market	  and	  
determining	  what	  impact	  they	  would	  have	  on	  pre-‐defined	  risk	  limits.	  In	  the	  
event	  of	  a	  threshold	  breach,	  trades	  can	  be	  blocked	  from	  going	  to	  market.	  It	  is	  
also	  possible	  to	  monitor	  for	  erroneous	  trades,	  such	  as	  “fat	  finger	  trades”	  and	  



block	  them.	  This	  facility	  is	  not	  just	  useful	  for	  trading	  groups	  but	  also	  for	  brokers	  
offering	  sponsored	  access,	  to	  monitor	  on	  a	  per	  client	  basis.	  Using	  the	  latest	  
technology	  platforms,	  such	  as	  CEP,	  enables	  pre-‐trade	  checks	  to	  be	  performed	  
with	  minimal	  latency.	  	  

	  
• Backtesting	  and	  Market	  Simulation	  –	  As	  introduced	  above,	  before	  putting	  algos	  

live,	  it	  is	  highly	  beneficial	  to	  test	  them	  with	  a	  variety	  of	  real	  historical	  and	  pre-‐
canned	  scenarios	  to	  see	  how	  they	  would	  perform	  if	  live.	  This	  can	  be	  done	  in	  
conjunction	  with	  realistic	  and	  tunable	  market	  simulators.	  

	  

Real-‐time	  Market	  Monitoring	  and	  Surveillance	  
Several	  regulators	  around	  the	  world	  have	  recognized	  that	  real-‐time	  market	  
monitoring	  and	  surveillance	  allows	  more	  rapid	  response	  to	  potential	  crises	  and	  
market	  abuse	  –	  potentially	  allowing	  rapid	  action	  to	  prevent	  or	  minimize	  any	  market	  
impact.	  The	  FSA	  –	  the	  UK	  regulator	  -‐	  was	  one	  of	  the	  first	  to	  speak	  up	  on	  this	  and	  
specify	  a	  system	  to	  achieve	  more	  real-‐time	  monitoring	  using	  Complex	  Event	  
Processing.	  Now	  other	  regulators	  around	  the	  world	  are	  looking	  at	  similar	  
approaches.	  Many	  trading	  venues	  have	  long	  had	  real-‐time	  surveillance	  technologies	  
but	  there	  is	  a	  lack	  of	  consistency	  across	  the	  market.	  Brokers	  can	  also	  benefits	  from	  
this	  kind	  of	  technology	  to	  prevent	  abuse	  in	  their	  trading	  operations	  and	  ensure	  their	  
good	  reputation.	  
	  
The	  goal	  of	  real-‐time	  monitoring	  is	  to	  detect	  anomalous	  market	  movements,	  e.g.	  
price	  or	  volume	  spikes	  for	  a	  particular	  symbol	  on	  one	  or	  more	  exchanges.	  This	  
provides	  an	  early	  warning	  system	  to	  potential	  market	  problems	  and	  enables	  rapid	  
response.	  
	  
In	  the	  case	  of	  real-‐time	  market	  surveillance,	  the	  goal	  is	  to	  detect	  potential	  market	  
abuse	  while	  it	  is	  happening.	  The	  FSA	  drew	  an	  analogy	  that	  “traders	  are	  driving	  
Ferraris	  and	  regulators	  are	  trying	  to	  catch	  them	  on	  bicycles”.	  Utilizing	  the	  same	  
technology	  used	  in	  HFT	  for	  real-‐time	  surveillance	  and	  monitoring	  gives	  regulators	  
“Ferraris	  as	  police	  cars”,	  to	  be	  able	  to	  keep	  up	  with	  the	  high	  frequency	  markets.	  The	  
kind	  of	  patterns	  that	  can	  be	  detected	  include:	  
	  
• Insider	  trading,	  e.g.	  detection	  of	  an	  unusually	  large	  trading	  pattern	  followed	  

closely	  by	  a	  news	  event	  that	  moves	  the	  market.	  
• Front	  running	  of	  orders,	  e.g.	  detection	  of	  unusual	  and	  coincidental	  orders	  from	  a	  

prop	  desk	  just	  prior	  to	  an	  event	  that	  moves	  the	  market,	  such	  as	  a	  large	  client	  
order	  being	  placed	  by	  the	  broker	  in	  the	  same	  firm	  or	  some	  research	  being	  
published	  by	  an	  analyst	  in	  the	  same.	  

• Painting	  the	  tape,	  i.e.	  continuously	  taking	  the	  best	  offer	  in	  the	  market	  to	  drive	  the	  
price	  up.	  

• Fictitious	  orders	  to	  manipulate	  the	  price	  and	  try	  to	  get	  algos	  to	  respond.	  



• Trader	  collusion,	  in	  which	  traders	  cooperate	  to	  deliberately	  inflate	  instrument	  
volume	  and	  price,	  such	  as	  in	  wash	  trading.	  

	  
Keeping	  an	  audit	  trail	  of	  market	  data	  and	  potential	  abuse	  cases	  is	  also	  important.	  
Tick	  databases	  can	  be	  used	  here.	  Surveillance	  systems	  also	  involve	  researching	  new	  
abuse	  patterns,	  using	  business	  analytics	  platforms	  (from	  providers	  such	  as	  SAS).	  
	  

Will	  Algo	  and	  HFT	  replace	  the	  trader?	  
The	  evolution	  to	  Algo	  and	  HFT	  is	  somewhat	  analogous	  to	  the	  markets	  moving	  from	  
open	  outcry	  to	  electronic	  trading.	  When	  the	  Liffe	  floor	  in	  London	  went	  electronic,	  
half	  of	  the	  traders	  evolved	  to	  the	  new	  way	  of	  doing	  things	  and	  the	  other	  half	  went	  to	  
drive	  London	  cabs.	  The	  same	  is	  true	  with	  Algo	  and	  HFT.	  Traders	  who	  are	  more	  
involved	  with	  simple	  order	  entry	  will	  inevitably	  be	  replaced	  by	  technology.	  	  
However,	  Algo	  and	  HFT	  is	  an	  intellectual	  property	  business	  –	  so	  those	  with	  the	  right	  
expertise	  become	  the	  creative	  minds	  and	  the	  high	  level	  coordinators	  of	  armies	  of	  
algorithms.	  Humans	  are	  here	  to	  stay.	  
	  

Are	  Algo	  and	  HFT	  out	  of	  the	  price	  range	  of	  small	  firms?	  
Much	  has	  been	  made	  in	  the	  mainstream	  press	  of	  the	  unfair	  advantage	  of	  HFT	  
compared	  with	  techniques	  available	  to	  the	  ordinary	  investor.	  Actually	  fund	  
managers	  will	  use	  algos	  on	  behalf	  of	  the	  ordinary	  investor.	  And	  HFT	  helps	  keep	  
markets	  more	  efficient	  and	  trading	  more	  cost	  effective	  at	  the	  benefit	  of	  the	  ordinary	  
investor.	  
	  
With	  regard	  to	  setting	  up	  an	  HFT	  shop,	  everything	  described	  in	  this	  document	  is	  
available	  to	  any	  firm.	  The	  question	  is	  can	  they	  afford	  it?	  HFT	  is	  like	  motor	  racing.	  
There	  are	  some	  firms	  that	  compete	  in	  Formula	  1	  –	  with	  huge	  budgets	  and	  the	  
world’s	  top	  talent;	  others	  compete	  in	  national	  championships;	  others	  in	  club	  racing;	  
all	  can	  potentially	  win	  their	  tier	  and	  be	  successful.	  For	  $200,000	  or	  less	  per	  year	  a	  
firm	  can	  run	  a	  small	  HFT	  operation.	  I	  believe	  the	  costs	  are	  going	  to	  fall	  as	  hosted	  
services	  offering	  customizable	  Algo	  and	  HFT	  capabilities	  emerge.	  CQG	  and	  Ffastfill,	  
both	  hosted	  providers	  of	  trading	  platforms	  to	  the	  commodities	  and	  futures	  markets,	  
have	  already	  started	  offering	  customizable	  algorithms	  and	  spreaders	  at	  a	  lower	  cost.	  
It	  is	  even	  possible	  to	  offer	  hosted	  modeling	  tools	  that	  allow	  totally	  custom	  algos	  to	  
be	  created	  and	  deployed	  into	  the	  cloud.	  In	  this	  kind	  of	  scenario	  small	  trading	  firms	  
can	  concentrate	  on	  their	  own	  IP	  and	  don’t	  need	  to	  create	  in-‐premise	  IT	  shops	  with	  
skilled	  IT	  people,	  hardware,	  software,	  dedicated	  networks	  etc.	  This	  will	  inevitably	  
continue	  to	  evolve	  with	  new	  entrants,	  lowering	  the	  barriers	  to	  entry	  for	  HFT.	  	  



Thoughts	  on	  Regulation	  of	  Algo	  and	  HFT	  
	  

Market	  Impact	  
	  
What	  are	  the	  positive	  or	  negative	  impacts	  of	  Algo	  and	  HFT	  on	  the	  futures	  markets	  and	  
market	  structure	  (e.g.	  liquidity,	  volatility;	  impact	  of	  fundamentals,	  commercials	  or	  
hedgers;	  other	  issues)?	  
	  
There	  are	  a	  number	  of	  positive	  impacts	  of	  Algo	  and	  HFT	  –	  but	  there	  are	  also	  a	  
number	  of	  potential	  negative	  impacts.	  However,	  all	  of	  the	  negative	  impacts	  can	  be	  
mitigated	  by	  a	  combination	  of	  good	  policing	  and	  best	  practices	  from	  regulators,	  
trading	  venues	  and	  market	  participants.	  
	  
The	  positive	  impacts	  of	  Algo	  and	  HFT	  include	  the	  following:	  
	  
• Minimize	  market	  impact	  of	  large	  trades	  –	  As	  already	  described,	  algorithmic	  

trading	  provides	  an	  automated	  and	  intelligence	  way	  to	  break	  down	  large	  orders	  
into	  smaller	  chunks	  to	  minimize	  their	  impact	  on	  the	  market,	  while	  achieving	  a	  
benchmarked	  price.	  The	  market	  statistics	  illustrate	  the	  impact:	  for	  all	  global	  
markets	  the	  average	  order	  size	  has	  fallen,	  while	  the	  number	  of	  order	  has	  risen	  
significantly.	  

	  
• Lower	  cost	  of	  execution	  –	  Execution	  algorithms	  put	  capabilities	  previously	  only	  

available	  to	  the	  elite	  into	  the	  hands	  of	  the	  mainstream	  buy-‐side.	  The	  use	  of	  algos	  
rather	  than	  more	  expensive	  traders	  and	  the	  competition	  between	  brokers	  
continues	  to	  drive	  down	  margins	  and	  help	  the	  buyside	  achieve	  a	  significantly	  
reduced	  cost	  of	  execution.	  

	  
• More	  efficient	  markets	  –	  Most	  emerging	  statistical	  arbitrage	  opportunities	  will	  

be	  quickly	  identified	  by	  firms	  and	  algorithms	  created	  to	  mine	  the	  seams	  of	  gold.	  
Thus	  markets	  are	  continuously	  evolving	  and	  becoming	  more	  efficient.	  

	  
• More	  open	  and	  competitive	  trading	  markets	  –	  Contrary	  to	  some	  popular	  opinion,	  

there	  is	  less	  of	  a	  monopoly	  in	  the	  market	  generally.	  Although	  the	  top	  tier	  firms	  
can	  still	  hire	  top	  talent	  and	  are	  continuously	  seen	  as	  mysterious	  controllers	  of	  
the	  market,	  the	  reality	  is	  that	  one	  or	  two	  individuals	  can	  set	  up	  a	  firm	  that	  can	  
have	  access	  to	  the	  same	  kind	  of	  technology	  as	  the	  large	  players.	  Technologies	  
like	  CEP,	  widely	  available	  low	  latency	  market	  connectivity	  and	  hosting	  
environments	  enable	  “Fred	  and	  Ed	  in	  a	  shed”	  to	  run	  an	  advanced	  quant	  trading	  
operation.	  

	  



• Faster	  evolving	  trading	  venues	  –	  Market	  fragmentation	  has	  caused	  increased	  
competition	  for	  liquidity	  between	  trading	  venues.	  This	  is	  putting	  pressure	  on	  
exchange	  costs.	  It	  is	  also	  accelerating	  the	  level	  of	  technological	  advancement	  
provides	  by	  trading	  venues	  –	  for	  example,	  lower	  matching	  latency,	  improved	  
order	  throughput	  and	  more	  value-‐added	  services,	  such	  as	  co-‐lo.	  

	  
• Encouraging	  entrepreneurship	  –	  HFT	  is	  the	  ultimate	  form	  of	  capitalism.	  It	  enables	  

intellectual	  property	  to	  be	  turned	  into	  profit	  (or	  loss)	  rapidly,	  whether	  within	  a	  
large	  firm	  or	  as	  part	  of	  a	  smaller	  firm.	  

	  
• Increasing	  productivity	  –	  One	  trader	  can	  manage	  a	  handful	  of	  instruments	  and	  

can	  manage	  a	  few	  trading	  strategies	  manually.	  A	  trader	  watches	  the	  market	  and	  
responds	  by	  entering	  orders	  when	  (s)he	  instinctively	  spots	  patterns	  in	  the	  
market.	  In	  an	  algo-‐enabled	  world,	  a	  single	  trader	  can	  be	  the	  initiator	  and	  
coordinator	  of	  hundreds	  or	  thousands	  of	  instances	  of	  algorithms.	  The	  trader	  can	  
see	  P&L	  and	  status	  for	  all	  algorithmic	  instances	  on	  real-‐time	  dashboards	  and	  can	  
manually	  intervene	  when	  required.	  In	  this	  way,	  the	  productivity	  of	  a	  single	  
trader	  can	  be	  scaled	  hundreds	  or	  thousands	  of	  times.	  

	  
• Increasing	  US	  dominance	  in	  the	  global	  economy	  –	  Many	  media	  commentators	  

have	  portrayed	  Algo	  and	  HFT	  as	  some	  dark,	  mysterious,	  unfair	  and	  elite	  practice.	  
Actually	  none	  of	  these	  is	  true	  or	  fair.	  Commentators	  also	  speak	  of	  the	  danger	  of	  
derivatives	  and	  we	  should	  just	  go	  back	  to	  owning	  a	  share	  or	  a	  commodity	  –	  
because	  you	  know	  where	  you	  stood.	  In	  fact	  the	  capital	  markets	  are	  a	  major	  part	  
of	  the	  US	  economy	  and	  a	  key	  part	  of	  its	  economic	  leadership	  in	  the	  world	  –	  and	  
central	  to	  this	  is	  the	  growing	  area	  of	  Algo	  and	  HFT.	  The	  recent	  economic	  
downturn	  was	  not	  caused	  by	  Algo	  and	  HFT	  but	  by	  more	  fundamental	  factors.	  We	  
can	  take	  some	  lessons	  from	  the	  recent	  flashcrash	  to	  enhance	  the	  safety	  system	  of	  
Algo	  and	  HFT,	  given	  their	  importance	  to	  the	  economy.	  We	  must	  be	  careful	  not	  to	  
over-‐regulate	  and	  damage	  this	  important	  economic	  engine.	  

	  
	  
Possible	  negative	  issues	  that	  can	  arise	  from	  Algo	  and	  HFT	  include	  the	  following:	  
	  
• Accelerating	  and	  accentuating	  market	  movements	  –	  While	  algorithms	  didn’t	  

cause	  the	  flashcrash,	  it	  is	  likely	  they	  accelerated	  and	  accentuated	  it.	  Algos	  have	  
no	  emotion;	  they	  are	  looking	  for	  pre-‐programmed	  opportunities	  and	  will	  
ruthlessly	  execute	  against	  them.	  Some	  market	  panic	  in	  particular	  instruments,	  as	  
is	  suspected	  to	  have	  happened	  in	  the	  flashcrash,	  which	  then	  trigger	  stop-‐losses	  
and	  a	  radical	  market	  trend	  downwards	  might	  lead	  to	  algos	  shorting	  those	  
instruments	  and	  then,	  at	  an	  appropriate	  instant,	  buying	  them	  back	  at	  a	  profit.	  
This	  is	  of	  course	  true	  for	  all	  market	  movements	  every	  day	  –	  and	  flashcrash-‐style	  
incidents	  are	  infrequent.	  Although	  there	  are	  a	  number	  of	  mitigating	  measures	  
that	  regulators,	  trading	  venues	  and	  trading	  institutions	  can	  take	  around	  real-‐
time	  market	  monitoring	  and	  response	  (see	  below).	  



	  
• Easier	  to	  game	  the	  market	  –	  With	  millions	  of	  autonomous	  algorithms	  looking	  for	  

opportunities,	  it	  is	  easier	  to	  spoof	  the	  market,	  for	  example	  by	  sending	  in	  
anomalous	  quotes	  to	  try	  to	  trigger	  certain	  behavior	  in	  algorithms.	  It’s	  also	  easier	  
to	  carry	  out	  potential	  market	  abuse,	  such	  as	  wash	  trades	  or	  painting	  the	  tape,	  
because	  finding	  that	  abuse	  in	  a	  high	  frequency,	  fragmented	  world	  is	  challenging.	  
Again	  here,	  regulators,	  trading	  venues	  and	  trading	  institutions	  can	  employ	  real-‐
time	  surveillance	  and	  response	  to	  mitigate	  these	  risks.	  

	  
• Increased	  risk	  profile	  –	  As	  stated	  above,	  algorithms	  can	  make	  a	  trader	  hundreds	  

or	  thousands	  of	  times	  more	  productive.	  This	  can	  also	  increase	  the	  risk	  profile	  
hundreds	  or	  thousands	  of	  times.	  In	  addition,	  algorithms	  are	  moving	  very	  fast	  and	  
without	  proper	  pre-‐trade	  risk	  precautions,	  critical	  exposure	  levels	  can	  be	  
quickly	  exceeded	  or	  errors,	  such	  as	  fat	  finger	  trades,	  can	  be	  quickly	  accentuated.	  

	  
• Algos	  can	  go	  wild	  –	  Different	  trading	  firms	  have	  different	  standards	  of	  

certification	  for	  algorithms	  before	  putting	  them	  live	  –	  and	  in	  some	  cases	  some	  
logic	  may	  be	  incorrect	  or	  missing.	  Also,	  the	  phenomenon	  of	  the	  black	  swan	  
means	  that	  algorithms	  may	  meet	  scenarios	  they	  have	  never	  been	  prepared	  for.	  
For	  these	  reasons,	  algorithms	  can	  go	  wrong	  or	  behave	  against	  their	  intended	  
specification.	  This	  can	  result	  in	  incorrect	  orders	  being	  placed	  into	  the	  market	  
and	  a	  large	  potential	  loss.	  Worse	  still,	  it	  can	  result	  in	  a	  stream	  of	  spurious	  orders	  
being	  placed	  into	  the	  market.	  There	  have	  been	  a	  number	  of	  such	  cases	  covered	  in	  
the	  press	  in	  the	  last	  year.	  The	  problem	  with	  algorithms	  is	  that	  they	  are	  running	  
at	  very	  high	  speed	  and	  detecting	  these	  problems	  can	  be	  challenging.	  One	  way	  to	  
catch	  this	  is	  that	  a	  trader	  needs	  to	  be	  watching	  positions	  and	  behavior	  on	  real-‐
time	  dashboard.	  Ideally	  algorithmic	  platforms	  have	  a	  “big	  red	  button”	  to	  pull	  one	  
or	  all	  algorithms	  from	  the	  market.	  Often	  traders	  then	  prefer	  to	  hedge	  the	  
undesired	  positions	  manually.	  A	  more	  effective	  approach	  to	  algos-‐gone-‐wild	  is	  to	  
have	  a	  real-‐time	  pre-‐trade	  risk	  firewall	  capability	  –	  that	  can	  block	  incorrect	  or	  
spurious	  trades	  going	  to	  market	  if	  they	  fall	  outside	  a	  particular	  behavior,	  break	  
policies	  or	  exceed	  particular	  risk	  exposures.	  

	  
• Potential	  for	  market	  denial-‐of-‐service-‐style	  attacks	  –	  There	  have	  been	  a	  number	  of	  

incidences	  when	  out	  of	  control	  algorithms	  have	  fired	  streams	  of	  orders	  into	  the	  
market	  in	  quick	  succession.	  This	  can	  act	  in	  the	  same	  way	  as	  a	  network	  “denial	  of	  
service”	  attack	  –	  in	  which	  a	  network	  firewall	  spends	  all	  its	  time	  rejecting	  
fraudulent	  packets	  and	  thus	  cannot	  accept	  any	  real	  data	  packets.	  The	  market	  can	  
be	  taken	  up	  with	  handling	  these	  orders	  and	  thus	  slowed	  down	  significantly.	  

	  
• Additional	  load	  on	  trading	  venues	  –	  Further	  to	  the	  above	  point,	  many	  algorithms	  

adjust	  their	  bids	  and	  offers	  in	  the	  markets	  as	  the	  market	  changes	  –	  cancelling	  
current	  orders	  and	  replacing	  them	  with	  modified	  orders.	  If	  this	  increases	  it	  will	  
also	  start	  to	  slow	  down	  the	  markets.	  Many	  trading	  venues	  have	  considered	  



charging	  for	  excessive	  order	  cancellations	  due	  to	  the	  additional	  load	  that	  it	  puts	  
on.	  

	  
• Increased	  difficulty	  of	  policing	  the	  market	  –	  Millions	  of	  high	  frequency	  algorithms	  

combined	  with	  market	  fragmentation,	  cross-‐asset	  trading,	  dark	  liquidity	  and	  the	  
challenges	  identifying	  which	  clients	  of	  member	  firms	  are	  doing	  what	  –	  all	  
combine	  to	  make	  the	  job	  of	  the	  regulator	  very	  challenging.	  New	  technologies	  and	  
techniques,	  such	  as	  CEP-‐powered	  real-‐time	  surveillance	  have	  been	  shown	  to	  
help	  here	  –	  but	  the	  situation	  is	  still	  complex.	  
	  

• Potentially	  easier	  for	  terrorists	  to	  manipulate	  markets	  –	  A	  homeland	  security	  
issue	  is	  that	  if	  errors,	  panic	  and	  wild	  algorithms	  can	  influence	  market	  behavior	  
then	  it	  may	  be	  possible	  for	  terrorists	  to	  initiate	  such	  behaviors.	  We	  need	  to	  
ensure	  there	  are	  precautions	  in	  place	  to	  initiate	  circuit	  breakers	  consistently	  in	  
such	  a	  circumstance.	  	  

	  
• Popular	  fear	  of	  “big	  brother”	  –	  The	  last	  year	  has	  demonstrated	  that	  the	  media	  

and	  the	  general	  populace	  have	  taken	  a	  negative	  attitude	  to	  banks	  and	  also	  to	  
HFT.	  There	  has	  been	  a	  lot	  of	  coverage	  of	  certain	  Senators	  implying	  that	  HFT	  
gives	  firms	  an	  unfair	  advantage.	  Unfairly,	  HFT	  has	  been	  linked	  to	  the	  economic	  
downturn.	  The	  media	  has	  portrayed	  big	  brother	  style	  algorithms	  taking	  
advantage	  of	  the	  ordinary	  investor.	  Clearly	  HFT	  needs	  a	  Public	  Relations	  
makeover!	  

	  
	  

Regulation	  and	  Best	  Practices	  

Should	  the	  Commission	  adopt	  regulations	  and	  best	  practices	  (e.g.	  trading,	  oversight,	  
surveillance	  and	  risk	  management)	  related	  to	  Algo	  and	  HFT?	  
	  
The	  CFTC	  should	  not	  restrict	  Algo	  and	  HFT.	  Rather	  they	  should	  improve	  the	  policing	  
of	  the	  markets	  in	  the	  form	  of	  market	  monitoring	  and	  surveillance,	  and	  encourage	  
best	  practices	  around	  pre-‐trade	  risk	  for	  market	  participants.	  
	  

What	  should	  the	  role	  of	  the	  Commission,	  exchanges,	  clearing	  organizations	  and	  the	  
NFA	  be	  with	  regard	  to	  any	  oversight	  of	  Algo	  or	  HFT?	  
	  
The	  CFTC	  should	  take	  on	  the	  role	  of	  God’s	  eye	  oversight	  of	  the	  market.	  In	  other	  
words	  the	  CFTC	  should	  be	  empowered	  to	  do	  the	  following:	  
	  
• Real-‐time	  visibility	  -‐	  See	  in	  real-‐time	  what	  is	  happening	  on	  all	  of	  the	  markets	  the	  

CFTC	  supervise	  (and	  potentially	  ones	  they	  don’t).	  This	  involves	  connecting	  to	  
those	  markets	  and	  getting	  a	  real-‐time	  feed	  of	  full	  market	  depth	  and	  trade	  



information	  for	  each	  market.	  Using	  this	  information,	  market	  monitoring	  and	  
surveillance	  should	  be	  provided	  and	  an	  audit	  trail	  recorded.	  
	  

• Real-‐time	  market	  monitoring	  -‐	  Be	  able	  to	  detect	  patterns	  that	  indicate	  potentially	  
dangerous	  market	  movements,	  such	  as	  price	  or	  volume	  spikes	  in	  a	  particular	  
instrument.	  This	  involves	  parallel	  monitoring	  of	  all	  instruments	  on	  all	  trading	  
venues.	  This	  gives	  the	  CFTC	  an	  early	  warning	  system	  against	  potential	  problems	  
and	  the	  ability	  to	  immediately	  communication	  with	  trading	  venues.	  

	  
• Real-‐time	  market	  surveillance	  -‐	  Be	  able	  to	  detect	  patterns	  that	  indicate	  potential	  

market	  abuse,	  such	  as	  insider	  trading	  or	  market	  manipulation	  in	  real-‐time.	  
These	  incidents	  should	  be	  used	  to	  create	  cases,	  cross-‐referenced	  against	  past	  
cases	  and	  possibly	  acted	  upon	  immediately	  or	  later.	  Real-‐time	  visualization	  is	  
required	  to	  show	  CFTC	  surveillance	  staff	  what	  is	  happening	  in	  the	  market	  and	  
where	  potential	  abuse	  hotspots	  are	  occurring.	  

	  
• Audit	  Trail	  and	  offline	  investigation	  -‐	  Be	  able	  to	  record	  market	  and	  trade	  data	  as	  

an	  audit	  trail	  and	  for	  additional	  offline	  analysis	  and	  pattern	  discovery.	  One	  use	  is	  
to	  research	  into	  the	  causes	  of	  flashcrash-‐like	  incidents.	  Another	  is	  to	  analyze	  and	  
collect	  additional	  evidence	  for	  a	  particular	  investigation.	  A	  further	  use	  is	  to	  
discover	  new	  patterns	  of	  market	  abuse	  so	  they	  can	  be	  added	  to	  the	  database	  of	  
patterns	  and	  can	  be	  looked	  for	  in	  real-‐time.	  

	  
• Improved	  reporting	  of	  OTC	  products	  –	  Although	  less	  real-‐time,	  it	  would	  be	  

beneficial	  to	  improve	  the	  accuracy	  and	  timeliness	  of	  reporting	  of	  OTC	  products.	  
This	  reporting	  could	  then	  be	  incorporated	  into	  surveillance	  and	  analysis	  
operations.	  

	  
• Inter-‐regulator	  visibility	  -‐	  In	  addition,	  it	  would	  be	  ideal	  to	  have	  cooperation	  and	  

information	  sharing	  between	  other	  regulators,	  both	  within	  the	  US	  and	  
internationally.	  For	  example,	  there	  are	  several	  trading	  strategies	  that	  may	  look	  
like	  market	  abuse	  until	  you	  see	  that	  they	  are	  part	  of	  a	  cross-‐asset	  strategy	  
involving	  equities	  and	  futures.	  But	  the	  SEC	  and	  CFTC	  in	  isolation	  might	  only	  see	  
a	  subset	  of	  the	  trades.	  

	  
	  
The	  Exchanges	  and	  CFTC	  should	  agree	  and	  ensure	  each	  Exchange	  has	  implemented	  
the	  following:	  
	  
• Consistent	  real-‐time	  surveillance	  and	  monitoring	  -‐	  A	  suitable	  and	  consistent	  level	  

of	  real-‐time	  market	  surveillance	  and	  monitoring	  for	  each	  venue.	  An	  Exchange	  
should	  be	  able	  to	  detect	  unusual	  market	  patterns,	  such	  as	  price	  and	  volume	  
spikes,	  for	  all	  instruments.	  They	  should	  also	  be	  able	  to	  detect	  gaming	  and	  
potentially	  abusive	  trading	  patterns	  in	  real-‐time	  and	  follow-‐up	  with	  the	  member	  
firms	  involved.	  



	  
• A	  consistent	  definition	  of	  when	  to	  invoke	  circuit	  breakers	  -‐	  During	  a	  market	  

incident	  (such	  as	  a	  flashcrash),	  while	  circuit	  breakers	  might	  work	  for	  some	  
instruments	  on	  some	  trading	  venues,	  liquidity	  could	  just	  transfer	  to	  other	  
venues	  if	  they	  don’t	  have	  a	  consistent	  definition	  of	  when	  to	  invoke	  the	  circuit	  
breakers.	  Also,	  circuit	  breakers	  should	  ideally	  work	  for	  all	  instruments	  at	  all	  
times	  of	  the	  day.	  Additionally	  the	  circumstances	  under	  which	  circuit	  breakers	  
are	  initiated	  should	  be	  frequently	  reviewed.	  In	  the	  equities	  markets	  there	  have	  
been	  a	  number	  of	  false	  positives	  since	  the	  flashcrash,	  which	  has	  disrupted	  
trading	  –	  and	  the	  CFTC	  should	  consider	  this	  in	  the	  markets	  they	  regulate.	  

	  
In	  addition,	  brokers	  should	  implement	  the	  following:	  
	  
• Pre-‐trade	  risk	  firewalls	  –	  It	  is	  highly	  desirable	  to	  analyze	  each	  trade	  in	  real-‐time	  

before	  it	  hits	  the	  market	  and	  if	  necessary	  block	  the	  trade	  if	  it	  is	  dangerous	  or	  
erroneous.	  One	  use	  is	  to	  ensure	  a	  trade	  does	  not	  push	  exposure	  beyond	  key	  
thresholds	  levels.	  Another	  use	  is	  to	  ensure	  that	  the	  trade	  is	  not	  erroneous,	  such	  
as	  a	  “fat	  finger”	  trade.	  A	  further	  use	  is	  to	  ensure	  that	  an	  algorithm	  hasn’t	  gone	  
wild,	  such	  as	  getting	  stuck	  in	  an	  infinite	  loop	  whilst	  sending	  out	  trading	  signals.	  
Such	  risk	  firewalls	  are	  not	  just	  useful	  for	  internal	  users	  but	  also	  for	  clients	  in	  a	  
sponsored	  access	  model,	  to	  ensure	  on	  a	  client-‐by-‐client	  basis	  that	  their	  pre-‐trade	  
risk	  is	  under	  control.	  Clearly	  it	  is	  key	  that	  this	  pre-‐trade	  analysis	  does	  not	  slow	  
down	  HFT	  algos.	  
	  

• Internal	  market	  surveillance	  and	  monitoring	  –	  It	  should	  be	  possible	  to	  detect	  
unusual	  market	  movements	  in	  particular	  instruments	  as	  an	  early	  warning	  
system.	  Also,	  each	  institution	  should	  monitor	  its	  own	  trading	  groups	  and	  
customers	  to	  ensure	  that	  the	  regulator	  could	  not	  perceive	  any	  of	  its	  trading	  
activity	  as	  market	  abuse.	  

	  
All	  of	  the	  capabilities	  mentioned	  above	  are	  possible	  technologically	  now.	  They	  can	  
be	  achieved	  without	  disrupting	  current	  market	  operations	  and	  without	  putting	  
additional	  load	  on	  the	  market.	  
	  
	  

Data	  Availability	  	  

What	  types	  of	  data	  (i.e.	  raw	  feeds)	  are	  Algos	  and	  HFT	  receiving	  from	  exchanges	  and	  
news	  organizations	  versus	  what	  is	  available	  to	  other	  market	  participants?	  
	  
It	  is	  not	  that	  Algo	  and	  HFT	  traders	  have	  privileged	  access	  to	  certain	  market	  access	  
methods	  compared	  to	  what	  is	  available	  to	  other	  market	  participants;	  it	  is	  rather	  that	  
they	  often	  need	  as	  fast	  access	  as	  possible	  and	  choose	  to	  pay	  for	  it.	  As	  already	  
described,	  HFT	  shops	  want	  to	  get	  end-‐to-‐end	  latency	  as	  low	  as	  possible	  –	  so	  they	  
will	  want	  low	  latency	  market	  data	  as	  well	  as	  low	  latency	  market	  access.	  A	  number	  of	  



market	  data	  vendors	  specialize	  in	  low	  latency	  market	  data,	  and	  some	  trading	  
platforms	  offer	  direct	  connectivity	  to	  venues,	  e.g.	  CBOT	  or	  ICE.	  This	  access	  may	  cost	  
more	  than	  less	  high	  performing	  access	  routes.	  
	  
Similarly	  for	  news	  providers,	  there	  are	  now	  news	  offerings	  from	  firms	  such	  as	  
Thomson-‐Reuters	  and	  Dow-‐Jones	  that	  offer	  tagged	  news	  for	  use	  in	  HFT.	  Example	  
uses	  for	  news	  within	  algos	  include	  correlating	  news	  announcements	  with	  futures	  
movements,	  or	  trading	  on	  news	  before	  the	  markets,	  e.g.	  modifying	  positions	  on	  
news	  of	  a	  war,	  economic	  event	  or	  weather	  event.	  Again,	  these	  feeds	  cost	  extra	  and	  
are	  only	  useful	  if	  you	  are	  in	  the	  HFT	  space.	  In	  fact	  trading	  on	  news	  in	  HFT	  is	  still	  a	  
fairly	  obscure	  practice	  that	  still	  only	  a	  handful	  of	  firms	  are	  involved	  in.	  
	  
Less	  high	  frequency	  participants	  may	  gain	  access	  to	  the	  market	  through	  analysis	  
and	  trading	  tools,	  such	  as	  Bloomberg	  or	  CQG	  –	  which	  have	  their	  own	  integrated	  
market	  data	  and	  news	  delivery.	  
	  
It	  is	  “horses	  for	  courses”	  when	  deciding	  your	  needs	  in	  terms	  of	  market	  data	  and	  
news.	  It	  is	  certainly	  not	  some	  secret	  monopoly	  by	  Algo	  and	  HFT	  firms.	  But	  there	  is	  a	  
cost	  differential	  in	  terms	  of	  being	  able	  to	  acquire	  the	  highest	  frequency	  feeds.	  
	  
	  

Technological	  Challenges	  

What	  are	  the	  technological	  challenges	  or	  limitations	  to	  Algo	  and	  HFT?	  
	  
When	  describing	  the	  cutting	  edge	  of	  technology,	  the	  phrase	  “rocket	  science”	  is	  
commonly	  used.	  Ironically	  rocket	  science	  hasn’t	  evolved	  much	  in	  60	  years,	  whereas	  
algorithmic	  trading	  technology	  evolves	  daily.	  In	  Algo	  and	  HFT	  the	  barriers	  of	  today,	  
described	  below,	  will	  quickly	  be	  breached	  and	  new	  barriers	  will	  emerge.	  
	  
Some	  of	  the	  barriers	  that	  are	  being	  hit	  or	  approached	  by	  current	  generation	  Algo	  
and	  HFT	  technology	  include	  the	  following:	  
	  
• Transmissions	  speed	  (speed	  of	  light)	  -‐	  For	  those	  engaged	  in	  pure	  latency	  

arbitrage,	  the	  barriers	  of	  physics	  are	  providing	  restrictions	  in	  terms	  of	  their	  
ability	  to	  access	  and	  respond	  to	  market	  data.	  Some	  firms	  are	  drilling	  holes	  
through	  walls	  just	  to	  shorten	  the	  piece	  of	  wire	  that	  connects	  them	  to	  certain	  
trading	  markets.	  Other	  firms	  are	  turning	  to	  custom	  hardware	  to	  assist	  them	  in	  
pumping	  the	  data	  in	  quickly.	  Einstein	  proved	  we	  cannot	  exceed	  the	  speed	  of	  light	  
in	  transmission	  speeds	  but	  in	  terms	  of	  data	  throughput,	  data	  and	  processing	  
parallelism	  offer	  potential	  for	  increasing	  throughput	  considerably.	  

	  
• Analysis	  speed	  –	  Further	  to	  the	  previous	  point,	  keeping	  real-‐time	  analysis	  up	  

with	  the	  rates	  of	  data	  throughput	  is	  also	  becoming	  challenging.	  The	  pattern	  
analysis	  within	  algorithms	  is	  more	  complex	  than	  just	  getting	  the	  data	  in	  –	  



because	  complex	  analytics	  are	  being	  done	  rather	  than	  just	  shipping	  data.	  The	  
OPRA	  feed,	  one	  leading	  benchmark	  of	  analysis	  requirements,	  has	  exceeded	  1	  
million	  events	  per	  second.	  Technologies	  like	  Complex	  Event	  Processing,	  
combined	  with	  parallelization	  techniques,	  such	  as	  grid	  computing,	  need	  to	  
continue	  to	  evolve	  to	  keep	  up.	  

	  
• Trading	  venue	  performance	  –	  While	  trading	  venues	  continue	  to	  consider	  

performance	  enhancements,	  increased	  loads	  can	  hinder	  their	  performance.	  We	  
have	  already	  seen	  performance	  hits	  at	  major	  exchanges	  under	  high	  load.	  If	  algos	  
are	  allowed	  to	  continue	  to	  modify	  orders	  without	  restriction	  then	  the	  load	  on	  
trading	  venues	  will	  continue	  to	  increase,	  requiring	  continued	  technology	  
enhancement.	  

	  
• Keeping	  up	  with	  global	  market	  fragmentation	  –	  For	  a	  global	  cross-‐asset	  trading	  

organization,	  keeping	  up	  with	  new	  markets	  is	  an	  expensive,	  complex	  and	  time-‐
consuming	  endeavor.	  However,	  the	  promise	  of	  “mining	  new	  seams	  of	  gold	  before	  
other	  prospectors	  arrive”	  is	  enticing.	  	  

	  
• Finding	  new	  trading	  opportunities	  –	  Continuously	  evolving	  trading	  operations	  

and	  looking	  for	  new	  trading	  opportunities	  is	  challenging.	  Complex	  research	  tools	  
and	  human	  processes	  to	  help	  discover	  new	  trading	  opportunities	  must	  continue	  
to	  evolve.	  

	  
• Skills	  shortage	  –	  In	  order	  to	  compete,	  many	  trading	  strategies	  are	  becoming	  more	  

and	  more	  complex.	  For	  example,	  a	  HFT	  algo	  that	  trades	  on	  cross-‐asset,	  cross-‐
border	  aggregated	  liquidity.	  The	  human	  intellectual	  property	  and	  skills	  in	  
putting	  together	  such	  scenarios	  and	  the	  integrated	  technology	  to	  support	  them	  
is	  in	  short	  supply.	  

	  
• Cost	  barriers	  –	  To	  compete	  at	  the	  highest	  level	  in	  Algo	  and	  HFT	  is	  costly.	  

However,	  as	  already	  described	  it	  is	  possible	  to	  get	  in	  the	  game	  for	  lower	  cost.	  
	  
	  

Conclusions	  
Algo	  and	  HFT	  are	  highly	  beneficial	  to	  the	  US	  and	  global	  economy.	  Restricting	  their	  
usage	  is	  dangerous.	  However,	  best	  practices	  and	  guidance	  to	  trading	  institutions	  is	  
needed.	  Mandated	  pre-‐trade	  risk	  practices,	  along	  with	  market	  surveillance	  and	  
monitoring	  are	  needed	  to	  protect	  against	  the	  potential	  of	  further	  flash	  crashes	  and	  
algos	  going	  wild	  -‐	  both	  of	  which	  negatively	  influence	  market	  performance	  and	  
reputation.	  
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1 Introduction

The impact of high frequency trading (HFT) on the U.S. equity markets has
received considerable attention in the wake of the financial crisis of 2008. It
has been asked whether the increase in the amount of automated trading as
a percentage of overall trading activity over the past several years has been
accompanied by degraded measures of market health such as liquidity, trading
costs, volatility, etc. Uninformed answers to these important questions have the
potential to influence policy makers toward actions that are not beneficial to
the vitality and efficient functioning of financial markets in the U.S.

This work presents some evidence showing that the U.S. equity markets
appear to have become more efficient with tighter spreads and greater liquidity
over the past several years; a period that has seen a sizable increase in the
prevalence of HFT, and a period during which there has been coincident growth
in automation and speed on many exchanges. It has been suggested that HFT
now accounts for over half of U.S. equity share volume [1]. With such a large
presence in the market, it is important to understand if there are any adverse
effects caused by such activity. While the existence of a causal relationship is
not proven, evidence is presented which suggests that the U.S. markets have
improved in several respects as HFT activity has grown.

One measure of efficiency investigated is the bid-ask spread and it is expected
that the presence of more participants, algorithmic and otherwise, will drive
spreads down due to competition, thereby decreasing costs to other investors.
The results presented in this paper confirm the results of many other studies,
showing that bid-ask spreads have come down over time for a broad range of
stocks.

Another measure of efficiency is liquidity, representing the ability of investors
to obtain their desired inventories with minimal price impact. Again, it is ex-
pected that more participants implies a greater amount of liquidity in the mar-
kets, a benefit to investors. This appears to be the case as this paper confirms
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the results of other papers demonstrating an increase in available liquidity over
time.

It was shown by Samuelson in [2] that if a stock price is efficient, i.e., the
price is fairly valued with all public information, then it must follow a martingale
process. As a consequence, an efficient price exhibits no serial autocorrelation,
either positive (momentum) or negative (mean-reversion). Measurements are
made in this paper that test how closely stock prices resemble a random walk,
and improvements are seen for all segments.

A variance ratio test was developed by Lo and Mackinlay in [3] which makes
use of the fact that in an efficient market, the variance per unit time of the
price of a stock should be constant. This allows ratios of variances over different
time horizons to be taken and compared with theoretical expectations where,
in an efficient market, these tests would show that there is little or no serial
autocorrelation in prices. Another advantage of this type of test is that it
does not depend on a particular order of serial autocorrelation, only whether
any such autocorrelation is present. These tests, a novel contribution of this
paper, demonstrate that for all the data-sets investigated, there is an overall
improvement in efficiency in prices over time.

The data-sets used in this study are the Russell 1000 components, consisting
of 1000 large-cap and mid-cap stocks, and the Russell 2000 components, con-
sisting of 2000 small-cap stocks. The set of components are taken as of Q4 2009,
and no attempt is made to correct for survivor bias, though it may be argued
that the nature of this study is not sensitive to such effects.

Additionally, each index is partitioned into two sets; NYSE-listed stocks and
NASDAQ-listed stocks. For much of the time period studied, NASDAQ-listed
stocks traded primarily on automated, electronic exchanges while NYSE-listed
stocks have transitioned from being primarily traded manually on the NYSE to
being traded on a more competitive, automated group of electronic exchanges.
Therefore the data essentially represents four distinct subsets of stocks, at least
from an historical context: large-cap stocks largely traded automatically (ap-
proximately 200 NASDAQ-listed stocks in the Russell 1000), large-cap stocks
largely traded manually (approximately 800 NYSE-listed stocks in the Rus-
sell 1000), small-cap stocks largely traded automatically (approximately 1300
NASDAQ-listed stocks in the Russell 2000), and small-cap stocks largely traded
manually (approximately 700 NYSE-listed stocks in the Russell 2000). This par-
tition allows comparisons to be made that help more clearly identify the impact
of automation and technology advances on the health of the market.

The raw data is sampled at 1 second intervals for each stock during the
period Jan 1, 2006 to Dec 31, 2009 inclusive, representing 16 quarters of data.
The first 10 minutes and last 10 minutes of each day are omitted to prevent
opening and closing activities from influencing the results. Inside values are
used across the NASDAQ, NYSE, NYSE ARCA and BATS exchanges. This
represents a significant fraction of all shares traded in the U.S. and so is taken
to be representative of overall market activity.

With this data-set a series of statistical tests and measurements are run,
designed to reflect the health of the market. Spreads, available liquidity, and
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transient volatility in the form of variance ratio tests are presented here as these
are commonly cited metrics of market efficiency and market quality.

2 Bid-Ask Spreads

Spreads are a cost to trading and, all else being equal, smaller spreads are
evidence of a better cost structure for investors. Conversely, market makers
and other liquidity providers earn profits through the spread. To that extent
smaller spreads imply not only smaller revenues for market makers but also that
these participants, by quoting smaller spreads, are more competitive; a sign of
a healthy market.

Bid-ask spreads are presented as the mean absolute spread of each of the
components of the index, where the absolute spread is defined as the best ask
price less the best bid price. There are other common ways to present bid-ask
spread data including the use of relative spreads. This formulation is meant
to more directly reflect transaction costs for investors caused by the bid-ask
spread. Market makers and other liquidity providers commonly adjust their
quotes based on market volatility in order to compensate for their increased
risk of holding inventory [4]. Therefore a volatility adjustment is commonly
done to remove the impact of volatility from spreads, typically making it easier
to spot trends in spreads over time. Dollar-value weighting is also sometimes
used in an effort to better reflect costs of the spread paid by investors. Equal
weighting is chosen here because many of the largest and most liquid stocks are
pinned at a spread of one penny.

Each of these adjustments will alter the results to some degree though over-
all trends are expected to remain, and this is confirmed in the appendix which
contains some results with these adjustments made. Also available in the ap-
pendix are some bid-ask spread results for the NASDAQ-100 index, consisting
of many of the largest stocks listed on the NASDAQ.

Figure 1 presents the mean of the absolute spread over time for the Russell
1000 stocks partitioned into its NYSE-listed and NASDAQ-listed components.
This is done to try to isolate differences in behavior over the period studied that
may be attributable to structural changes on each of these exchanges. Both
groups have seen a reduction in spreads over the period investigated, dropping
by about 1.5 pennies for the NYSE-listed stocks and about 1 penny for the
NASDAQ-listed stocks. By the end of 2009 it appears the the mean spread of
the two groups has converged to approximately the same value, something that
could not be said previously.

It is known that the rate of adoption of automated trading on NYSE-listed
stocks lagged behind that of NASDAQ-listed stocks. As the NYSE moved to an
electronic system to catch up technologically with the NASDAQ, and as other
electronic venues began taking market share from the NYSE, spreads in the
Russell 1000 dropped more dramatically for the NYSE-listed stocks than the
NASDAQ-listed stocks. This also suggests a relationship between the entrance
of algorithmic trading with a reduction in spreads, something that is noted for
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Figure 1: Mean bid-ask spread for Russell 1000

Figure 2: Mean bid-ask spread for Russell 2000
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the German DAX in [5].
The same information for the Russell 2000 index is presented in Figure 2.

Like the Russell 1000, these stocks have seen a reduction in mean spreads by
about a penny, with the NYSE-listed symbols showing a more dramatic reduc-
tion than the NASDAQ-listed symbols.

3 Available Liquidity

Liquidity is an important part of a vital market. It is often loosely defined
as the ability of participants to trade the amount that they wish at the time
they wish. One measure of liquidity is the amount of size offered for sale or
for purchase by market makers and other liquidity providers at a given point in
time. If more shares are available to be bought and sold at any given time, then
market participants have a greater ability to get into or out of positions based
on their needs or desires and are less dependent on either waiting for sufficient
size to become available or to seek an alternative execution venue.

Available liquidity is measured as the dollar value available to buy or sell at
any instant in time at the inside bid and ask, and time averages over an entire
quarter are taken. Each stock in an index is weighted by its capitalization
reported for the quarter to produce a single capitalization-adjusted available
liquidity metric. The motivation for weighting by capitalization is that it more
closely reflects the available fraction of a company’s total value that can be
transacted at any given time which may be more representative of the limitations
to investors. Additional available liquidity data is presented in the appendix,
including results for the NASDAQ-100.

Figure 3 presents the adjusted available liquidity for the Russell 1000 compo-
nents partitioned into NYSE-listed and NASDAQ-listed stocks. Between 2006
and the end of 2009, the available liquidity of both groups of stocks increased
significantly, by about a factor of two, though all of that gain appears to have
taken place in 2009. Similar results are seen for the two groups of stocks in the
Russell 2000 which is shown in Figure 4.

It is plausible that the increase in liquidity can be explained, at least in part,
by the presence of HFT participants. Since the data used in this work is sampled
at a high rate, one can also claim that this liquidity measure is representative
of the immediacy that is available to market participants. This immediacy is
a type of option that is available to market participants providing them with
more flexibility than may otherwise be available.
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Figure 3: Mean available liquidity for Russell 1000

Figure 4: Mean available liquidity for Russell 2000
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4 Market Efficiency Tests

There exists a large body of research devoted to tests of market efficiency. In this
context, efficiency typically refers to the degree to which the price time-series of a
stock resembles a random walk. The theoretical foundation for this was laid out
by Samuelson in [2] which proves that a properly anticipated stock price should
fluctuate randomly with no serial autocorrelation. Pioneering work in this area
in the form of a variance ratio test was presented by Lo and Mackinlay in [3], in
which they show with some level of statistical confidence that the NYSE stock-
price time-series do not appear similar to a random walk, suggesting inefficiency
in the markets. The data used in their paper is sampled daily and ends in 1988,
prior to a significant number of structural and regulatory changes that have
dramatically changed the nature of U.S. equity markets.

If stock price time-series truly followed random walks, it is expected that the
variance ratio computations would have values close to one. A variance ratio’s
deviation from unity can then be considered to be proportional to the amount
of inefficiency present in that stock or index. Values greater than one imply a
momentum process, equivalently a positive serial autocorrelation, while values
less than one imply mean-reversion, or negative serial autocorrelation.

Subsequent research extended the variance ratio tests in [3] to provide al-
ternative methods to test market efficiency. In particular Chow and Denning
in [6] extend the work of [3] to provide a more statistically powerful test pro-
cedure and it is this “Chow-Denning” test that is used as a metric of market
efficiency in this section. To the best of the authors’ knowledge, such tests have
not previously been applied to data sampled at a high rate as is done here.

It is important to note that at this sampling rate micro-structural effects are
expected to be present. In particular, bid-ask bounce and statistical influences
caused by the discrete nature of price values will tend to skew the results toward
appearing mean-reverting. These effects are expected at high sampling rates and
are expected to decay as the sampling rate is decreased. However, for a given
sampling interval, the effect is expected to be roughly constant over time, and
thus the interesting aspect of the results is how they have changed over time
and whether they have converged toward a value of one. An attempt has been
made in the variance calculations to account for the discrete price values and
midpoint prices are used rather than last trade prices to minimize the effect of
bid-ask bounce. More details are available in the appendix, along with some
results based on last trade prices.

Raw variance ratio tests are applied to the Russell 1000 and Russell 2000,
partitioned into NYSE-listed and NASDAQ-listed stocks. Three ratios are cho-
sen to be representative of what may be typical HFT holding periods; 10 seconds
over 1 second, 60 seconds over 10 seconds, and 600 seconds over 10 seconds.

Figures 5 and 6 show the raw variance ratios of 10 seconds over 1 second
for midpoint price data from the Russell 1000 and 2000, respectively. These
indexes are partitioned into NYSE-listed and NASDAQ-listed stocks. At this
high frequency, it is seen that the Russell 1000, NASDAQ-listed stocks show a
high degree of efficiency, and have been relatively efficient throughout the entire
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period investigated, with some improvement seen over time. As these stocks
have largely been traded electronically for the entire period, such results are
expected. The NYSE-listed components, by contrast, show a relatively large
amount of inefficiency in 2006, but have increased to over 0.95 by 2009 and now
appear to be at least as efficient as the NASDAQ-listed stocks.

The Russell 2000 index in Figure 6 shows the same general trends, though the
overall efficiency is lower than the Russell 1000. This is to be expected since the
smaller-cap stocks of the Russell 2000 do not have the same amount of trading
activity as large-cap stocks. The NYSE-listed symbols show a greater degree of
improvement in efficiency than the NASDAQ-listed symbols, again coinciding
with improvements in automation and increased participation in these stocks
by automated trading firms.

The same results are presented for the variance ratios of 1 minute over 10
seconds in Figures 7 and 8 for the Russell 1000 and Russell 2000, respectively.
Similar conclusions hold when comparing these results with the 10 seconds over
1 second variance ratios. The degree to which the variance ratio of NYSE-listed
stocks in the Russell 1000 has improved of the period studied is dramatic, and
has largely converged to be identical to the NASDAQ-listed components of the
index. A similar trend is seen with the Russell 2000 components.

A large variance ratio of 10 minutes over 10 seconds is presented to provide
a picture of market efficiency over larger time-scales. Figures 9 and 10 show the
results for the Russell 1000 and Russell 2000, respectively, and the same general
trends seen in the previous plots of variance ratios are present in these figures.

The Chow-Denning method tests the null hypothesis that a price time-series
is drawn from a random walk, and produces a single test statistic. This value
can be compared to a threshold for a certain significance level. In this study
5% was chosen as the significance level.

The test was applied over each of the 16 quarters, individually to each stock
in the data-set with the input to the test being the logarithm of the midpoint
price. Sampling was done at 10 minute intervals and 10 second intervals. At
5% significance, if this test were run on 100 truly random time-series, one would
expect to see about 5 test outcomes reject the null hypothesis. That is to say,
due to the statistical nature of this test, it may produce false positives about
5% of the time.

Results for the 10 minute sampling Chow-Denning tests are presented in
Figures 11 and 12 for the Russell 1000 and 2000 data-sets, respectively. These
figures show the fraction of stocks in the index that the Chow-Denning test
reported as not being drawn from a random walk at a 5%-significance level.
Figure 11 shows that at 10 minute sampling, the number of such occurrences
has dropped over time and has largely been below 5% since the beginning of
2009, suggesting that there is no statistically significant inefficiencies at this
sampling interval that this test detects. The NYSE-listed stocks appear to have
a more dramatic improvement, in agreement with the variance ratio results
presented above.

Similar results are seen for the Russell 2000 in Figure 12 with a general
improvement in efficiency over the time period investigated although it appears
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Figure 5: Variance Ratios, Russell 1000, 10 seconds / 1 second

Figure 6: Variance Ratios, Russell 2000, 10 seconds / 1 second
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Figure 7: Variance Ratios, Russell 1000, 1 minute / 10 seconds

Figure 8: Variance Ratios, Russell 2000, 1 minute / 10 seconds
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Figure 9: Variance Ratios, Russell 1000, 10 minute / 10 seconds

Figure 10: Variance Ratios, Russell 2000, 10 minute / 10 seconds
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Figure 11: Chow-Denning test results for the Russell 1000, 10 minute sampling

Figure 12: Chow-Denning test results for the Russell 2000, 10 minute sampling
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that there remains some degree of inefficiency at this time scale that the Chow-
Denning test is detecting. As expected, the large-cap stocks in the Russell 1000
exhibit a smaller number of significant events than the Russell 2000.

A smaller sampling interval of 10 seconds is also used for the Chow-Denning
tests, and the results of these computations are presented in Figures 13 and 14
for the Russell 1000 and Russell 2000, respectively. At this sampling rate the
impact of microstructural noise is expected to have a more significant impact
than at 10 minute sampling. Despite a higher degree of apparent inefficiency,
Figure 13 demonstrates that even at such fine sampling, the Russell 1000 appears
to have improved over the four years studied, and that the NYSE-listed symbols
have shown a more dramatic improvement in that time, largely converging with
the NASDAQ-listed symbols. Similar observations are made for the Russell
2000 index in Figure 14.

An alternative interpretation of these results is that of an increase in the
speed of mean-reversion over time. As mentioned, mean-reversion is present in
this data due in part to micro-structural effects, and as the rate of trading and
market activity increases, the impact of such noise on these variance ratio-based
tests become less prevalent. Therefore one can conjecture that the decrease in
the Chow-Denning test statistics may be as a result of an increased rate of
reversion of prices to their mean. This is also an indication of an increasing
competitive landscape and increasing efficiency in the market.
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Figure 13: Chow-Denning test results for the Russell 1000, 10 second sampling

Figure 14: Chow-Denning test results for the Russell 2000, 10 second sampling
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5 Summary

The presented data is suggestive that the U.S. equity markets have become more
liquid and efficient over the past four years, despite macro-economic shocks. As
the ratio of HFT activity to total market activity has grown, there appears
to be no evidence that short-term volatility, liquidity or spreads have risen
for the bulk of market participants. To the contrary, the evidence presented
here suggests a continued improvement in each of these factors, implying a
sympathetic relationship between HFT and the health of the overall markets.

The partitioning of data into the Russell 1000 and Russell 2000 shows that
there has generally been a larger degree of improvement in efficiency metrics in
the Russell 1000. The difference in trends observed between NYSE-listed and
NASDAQ-listed stocks also supports the hypothesis that increased automation
and the presence of HFT that has come with it has improved the market quality
metrics investigated in this paper.
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6 Appendix

6.1 Bid-Ask Spreads

Absolute spreads are computed as follows. An individual stock i has a spread
at time t of Si(t) = ai(t)− bi(t). The spread over a quarter q is defined as

〈Si(q)〉 =

∑
t∈q Si(t)∑

t∈q 1
.

The spread SN
q over an index N is the weighted average over all components,

where wi represents the weighting of stock i. The spread is then

SN
q =

∑
i∈N wi 〈Si(q)〉∑

i∈N wi
.

The choice of equal weighting sets all wi = 1. Dollar value weighting is de-
termined by setting the weight for each stock to the total dollar value of all
transactions for that stock in the quarter.

Relative spread can be computed in a similar manner, with the relative
spread SR(t)i = a(t)i−b(t)i

p(t)i
replacing the absolute spread above, and where pi(t)

represents price. A common adjustment made to bid-ask spreads is a volatility
adjustment [4]. The VIX is used for this purpose and its value relative to the
mean of its value over the time period studied is chosen as the deflator. The
value of the VIX over the period studied is given in Figure 15.

VIX-adjusted spread data is presented in Figures 16 and 17 showing the
Russell 1000 and Russell 2000 relative spreads over time. Similar to the results
presented in the main body of this paper, the relative spreads have been stable
or falling over time, with a much larger reduction seen when adjusting for the
VIX.

For comparison, spread data is also presented for the NASDAQ-100 index.
Absolute spreads, both unadjusted and VIX-adjusted are given in Figure 18.
The trend for this index is consistent with that seen in the Russell data-sets.
Relative spreads are presented in a number of ways in Figure 19 and these
adjustments do not change the overall trends presented in the body of the text.

6.2 Available Liquidity

The available liquidity for a stock i at time t is given as

Li(t) = pi(t)
(
sa

i (t) + sb
i (t))

)
,

where sa
i (t) and sb

i (t) are the inside size at the ask and bid, respectively. In a
quarter q, the average available liquidity of a stock is

〈Li(q)〉 =

∑
t∈q Li(t)∑

t∈q 1
.

16



Figure 15: Quarterly VIX prices

Figure 16: Mean bid-ask spread for Russell 1000, VIX-adjusted
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Figure 17: Mean bid-ask spread for Russell 2000, VIX-adjusted

Figure 18: Absolute equal-weighted bid-ask spread for NASDAQ 100
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Figure 19: Bid-ask spread for NASDAQ 100

The available liquidity over an index N is the weighted average over all compo-
nents, such that

LN
q =

∑
i∈N wi 〈Li(q)〉∑

i∈N wi
,

where wi is the weighting for stock i. A common adjustment made is a capital-
ization adjustment, which is done by setting wi to the market capitalization of
a stock i in quarter q.

The main body of this paper presents results for the Russell 1000 and Russell
2000. For comparison, the available liquidity for the NASDAQ-100 is presented
in Figure 20, showing both a capitalization-weighting and an equal-weighting.
In both cases, the general trend of increasing available liquidity over the period
studied is seen.

6.3 Market Efficiency

The methodology used to compute the variance ratio values follows that pre-
sented in [3]. In particular, equations (12a) and (12b) are used. Sheppard’s
correction [7] is applied to the variance estimates in order to reduce the discrete
values of prices (log-midpoint prices) used in the computation.

The raw variance ratio ri for a stock i with time-ratio D is given by

ri =
vs1

i

Dvs2
i

,

where vs1 is the variance for sampling rate s1 and vs2 is the variance for sampling
rate s2 and by convention, s1

s2
= D > 1.
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Figure 20: Mean available liquidity for NASDAQ 100

In order to gain a sense of the impact of bid-ask bounce and spreads on
variance ratios, Figure 21 presents the raw variance ratios for the NASDAQ 100
using the last traded price and the midpoint price in the same figure. From
the left panel, showing a fine sampling rate, it is seen that the impact of the
bid-ask bounce on last trade prices results in a smaller variance ratio than
when midpoint prices are used. As the sampling rate is decreased to longer
time periods, the impact of bid-ask bounce becomes less pronounced. This is
demonstrated in the right panel of Figure 21, where the difference between the
variance ratios using trade prices and midpoint prices is much smaller.
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Figure 21: Mean Variance Ratios of Midpoint Prices vs. Trade Prices, NASDAQ
100. Left: 10 seconds / 1 second. Right: 1 minute / 10 seconds
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1 Introduction

The use of algorithmic trading, where computer algorithms directly manage the trading process at high

frequency, has become common in major �nancial markets in recent years, beginning in the U.S. equity

market more than 15 years ago. There has been widespread interest in understanding the potential impact

of algorithmic trading on market dynamics, as some analysts have highlighted the potential for improved

liquidity and more e¢ cient price discovery while others have expressed concern that it may be a source of

increased volatility and reduced liquidity, particularly in times of market stress. A number of articles and

opinion pieces on the topic have recently appeared in the press, with most decrying practices used by some

algorithmic traders in the equity market, and there have been calls for regulatory agencies in the United States

and Europe to begin investigations.1 Despite this interest, there has been very little formal empirical research

on algorithmic trading, primarily because of a lack of data where algorithmic trades are clearly identi�ed.

A notable exception is a recent paper by Hendershott, Jones, and Menkveld (2007), who get around the

data constraint by using the �ow of electronic messages on the NYSE as a proxy for algorithmic trading.

They conclude that algorithmic trading on the NYSE, contrary to the pessimists� concerns, likely causes

an improvement in market liquidity.2 In the foreign exchange market, there has been no formal empirical

research on the subject. The adoption of algorithmic trading in the foreign exchange market is a far more

recent phenomenon than in the equity market, as the two major interdealer electronic trading platforms

only began to allow algorithmic trades a few years ago. Growth in algorithmic trading has been very rapid,

however, and a majority of foreign exchange transactions in the interdealer market currently involve at least

one algorithmic counterparty.

In algorithmic trading (AT), computers directly interface with trading platforms, placing orders without

immediate human intervention. The computers observe market data and possibly other information at very

high frequency, and, based on a built-in algorithm, send back trading instructions, often within milliseconds.

A variety of algorithms are used: for example, some look for arbitrage opportunities, including small dis-

crepancies in the exchange rates between three currencies; some seek optimal execution of large orders at

the minimum cost; and some seek to implement longer-term trading strategies in search of pro�ts. Among

the most recent developments in algorithmic trading, some algorithms now automatically read and interpret

economic data releases, generating trading orders before economists have begun to read the �rst line.
1See, for instance, �Rewarding Bad Actors,�by Paul Krugman, New York Times, August 3, 2009, �High-Frequency Trading

Grows, Shrouded in Secrecy,� Time, August 5, 2009, and �Don�t Set Speed Limits on Trading,� by Arthur Levitt Jr., Wall
Street Journal, August 18, 2009.

2We also note a paper by Hasbrouck (1996) on program trading, where he analyzes 3 months of data where program trades
can be separately identi�ed from other trades. He concludes that both types of orders have an approximately equivalent impact
on prices. Algorithmic trading is not exactly equivalent to program trading, though it is a close cousin. In principle, a program
trade could be generated by a trader�s computer and then the trade conducted manually by a human trader. Our de�nition of
AT refers to the direct interaction of a trader�s computer with an electronic trading platform, that is the automated placement
of a trade order on the platform.
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The extreme speed of execution that AT allows and the potential that algorithmic trades may be highly

correlated, perhaps as many institutions use similar algorithms, have been cited as reasons for concerns that

AT may generate large price swings and market instability. On the other hand, the fact that some algorithms

aim for optimal execution at a minimal price impact may be expected to lower volatility. In this paper, we

investigate whether algorithmic (�computer�) trades and non-algorithmic (�human�) trades have di¤erent

e¤ects on the foreign exchange market. We �rst ask whether the presence of computer trades causes higher or

lower volatility and whether computers increase or reduce liquidity during periods of market stress. We then

study the relative importance of human and computer trades in the process of price discovery and re-visit

the assumption that liquidity providers are �uninformed.�

We formally investigate these issues using a novel dataset consisting of two years (2006 and 2007) of

minute-by-minute trading data from EBS in three currency pairs: the euro-dollar, dollar-yen, and euro-yen.

The data represent the vast majority of global spot interdealer transactions in these exchange rates. An

important feature of the data is that the volume and direction of human and computer trades each minute

are explicitly identi�ed, allowing us to measure their respective impacts.

We �rst show some evidence that computer trades are more highly correlated with each other than human

trades, suggesting that the strategies used by computers are not as diverse as those used by humans. But

the high correlation of computer trades does not necessarily translate into higher volatility. In fact, we �nd

next that there is no evident causal relationship between AT and increased market volatility. If anything,

the presence of more algorithmic trading appears to lead to lower market volatility, although the economic

magnitude of the e¤ect is small. In order to account for the potential endogeneity of algorithmic trading with

regards to volatility, we instrument for the actual level of algorithmic trading with the installed capacity for

algorithmic trading in the EBS system at a given time.

Next, we study the relative provision of market liquidity by computers and humans at the times of the

most in�uential U.S. macroeconomic data release, the nonfarm payroll report. We �nd that, as a share of

total market-making activity, computers tend to pull back slightly at the precise time of the release but then

increase their presence in the following hour. This result suggests that computers do provide liquidity during

periods of market stress.

Finally, we estimate return-order �ow dynamics using a structural VAR framework in the tradition of

Hasbrouck (1991a). The VAR estimation provides two important insights. First, we �nd that human order

�ow accounts for much of the long-run variance in exchange rate returns in the euro-dollar and dollar-yen

exchange rate markets, i.e., humans appear to be the �informed�traders in these markets. In contrast, in the

euro-yen exchange rate market, computers and humans appear to be equally �informed.�In this cross-rate,

we believe that computers have a clear advantage over humans in detecting and reacting more quickly to
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triangular arbitrage opportunities, where the euro-yen price is brie�y out of line with prices in the euro-dollar

and dollar-yen markets. Second, we �nd that, on average, computers or humans that trade on a price posted

by a computer do not impact prices quite as much as they do when they trade on a price posted by a human.

One possible interpretation of this result is that computers tend to place limit orders more strategically

than humans do. This empirical evidence supports the literature that proposes to depart from the prevalent

assumption that liquidity providers in limit order books are passive.3

The paper proceeds as follows. In Section 2 we introduce the EBS exchange rate data, describing the

evolution over time of algorithmic trading and the pattern of interaction between human and algorithmic

traders. In Section 3 we study the correlation of algorithmic trades. In Section 4 we analyze the relationship

between algorithmic trading and exchange rate volatility. In Section 5 we discuss the provision of liquidity

by computers and humans at the time of a major data release. In Section 6 we report the results of the

high-frequency VAR analysis. We conclude in Section 7. Some robustness results are presented in the

Appendix.

2 Data description

Today, two electronic platforms process the vast majority of global interdealer spot trading in the major

currency pairs, one o¤ered by Reuters, and one o¤ered by EBS.4 These platforms, which are both electronic

limit order books, have become essential utilities for the foreign exchange market. Importantly, trading in

each major currency pair has over time become very highly concentrated on only one of the two systems. Of

the most traded currency pairs, the top two, euro-dollar and dollar-yen, trade primarily on EBS, while the

third, sterling-dollar, trades primarily on Reuters. As a result, the reference price at any moment for, say,

spot euro-dollar, is the current price on the EBS system, and all dealers across the globe base their customer

and derivative quotes on that price. EBS controls the network and each of the terminals on which the trading

is conducted. Traders can enter trading instructions manually, using an EBS keyboard, or, upon approval by

EBS, via a computer directly interfacing with the system. The type of trader (human or computer) behind

each trading instruction is recorded by EBS, allowing for our study.5

We have access to AT data from EBS from 2003 through 2007. We focus on the sample from 2006 and

2007, because, as we will show, algorithmic trades were a very small portion of total trades in the earlier years.

3For example, Chakravarty and Holden (1995), Kumar and Seppi (1994), Kaniel and Liu (2006), and Goettler, Parlour and
Rajan (2007) allow informed investors to use both limit and market orders. Bloom�eld, O�Hara and Saar (2005) argue that
informed traders are natural liquidity providers, and Angel (1994) and Harris (1998) show that informed investors can optimally
use limit orders when private information is su¢ ciently persistent.

4EBS has been part of the ICAP group since 2006.
5EBS uses the name �automated interface� (AI) to describe trading activity directly generated by a computer, activity we

call AT.

3



In addition to the full 2006-2007 sample, we also consider a sub-sample covering the months of September,

October, and November of 2007, when algorithmic trading played an even more important role than earlier

in the sample.6 We study the three most-traded currency pairs on the EBS system: euro-dollar, dollar-yen,

and euro-yen.

The quote data, at the one-second frequency, consist of the highest bid quote and the lowest ask quote on

the EBS system in these currency pairs, from which we construct one-second mid-quote series and compute

one-minute exchange rate returns; all the quotes are executable and therefore represent the true price at

that moment. The transactions data are at the one-minute frequency and provide detailed information on

the volume and direction of trades that can be attributed to computers and humans in each currency pair.

Speci�cally, the transactions volume data are broken down into categories specifying the �maker�and �taker�

of the trades (i.e., human or computer), and the direction of the trades (i.e., buy or sell the base currency),

for a total of eight di¤erent combinations. That is, the �rst transaction category may specify, say, the minute-

by-minute volume of trade that results from a human taker buying the base currency by �hitting�a quote

posted by a human maker. We would record this activity as the human-human buy volume, with the aggressor

(taker) of the trade buying the base currency. The human-human sell volume is de�ned analogously, as are

the other six buy and sell volumes that arise from the remaining combinations of computers and humans

acting as makers and takers.

From these eight types of buy and sell volumes, we can construct, for each minute, trading volume and

order �ow measures for each of the four possible pairs of human and computer makers and takers: human-

maker/human-taker (HH), computer-maker/human-taker (CH), human-maker/computer-taker (HC), and

computer-maker/computer-taker (CC).7 That is, the sum of the buy and sell volumes for each pair gives

the volume of trade attributable to that particular combination of maker and taker (which we symbolize as,

V ol(HH) or V ol(HC), for example). The di¤erence between the buy and sell volume for each pair gives

us the order �ow attributable to that maker-taker combination (which we symbolize simply as HH or HC,

for example). The sum of the four volumes, V ol(HH + CH + HC + CC), gives the total volume of trade

in the market. The sum of the four order �ows, HH + CH + HC + CC, gives the total (market-wide)

order �ow.8 Throughout the paper, we will use the expression �order �ow�to refer both to the market-wide

order �ow and to the order �ows from other possible decompositions, with the distinction clearly indicated.

Importantly, the data allow us to consider order �ow broken down by the type of trader who initiated the

6We do not use December 2007 in the sub-sample to avoid the in�uence of year-end e¤ects.
7The naming convention for �maker�and �taker� re�ects the fact that the �maker�posts quotes before the �taker� chooses

to trade at that price. Posting quotes is, of course, the traditional role of the market-�maker.�
8There is a very high correlation in this market between trading volume per unit of time and the number of transactions

per unit of time, and the ratio between the two does not vary much over our sample. Order �ow measures based on amounts
transacted and those based on number of trades are therefore very similar.
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trade, human-taker order �ow (HH + CH) and computer-taker order �ow (HC + CC).

The main goal of this paper is to analyze the e¤ect algorithmic trading has on price discovery and

volatility in the foreign exchange market. In our exchange rate data as in other �nancial data, the net of

signed trades from the point of view of the takers (the market-wide order �ow) is highly positively correlated

with exchange rate returns, so that the takers are considered to be more �informed�than the makers. Thus,

in our analysis of the relative e¤ects of human and computer trades in the market, we consider prominently

the order �ow decomposition into human-taker order �ow and computer-taker order �ow. However, we also

consider two other decompositions in our work. We consider the most disaggregated decomposition of order

�ow (HH;CH;HC;CC), as this decomposition allows us to study whether the liquidity suppliers, who are

traditionally assumed to be �uninformed�, are posting quotes strategically. This situation is more likely to

arise in our data, which comes from a pure limit order book market, than in data from a hybrid market

like the NYSE, because, as Parlour and Seppi (2008) point out, the distinction between liquidity supply

and liquidity demand in limit order books is blurry.9 We also decompose the data by maker type (human

or computer) in order to study whether computers or humans are providing liquidity during the release of

public information, which are periods of high exchange rate volatility and, often, market stress.

In our analysis, we exclude data collected from Friday 17:00 through Sunday 17:00 New York time from

our sample, as activity on the system during these �non-standard� hours is minimal and not encouraged

by the foreign exchange community. We also drop certain holidays and days of unusually light volume:

December 24-December 26, December 31-January 2, Good Friday, Easter Monday, Memorial Day, Labor

Day, Thanksgiving and the following day, and July 4 (or, if this is on a weekend, the day on which the U.S.

Independence Day holiday is observed).

We show summary statistics for the one-minute returns and order �ow data in Table 1. This table contains

a number of noteworthy features. First, order �ow, whether in total, broken down by human and computer

takers, or broken down into the 4 possible pairs of makers and takers, is serially positively correlated, which

is consistent with some informed trading models. For example, Easley and O�Hara (1987) model a situation

where sequences of large purchases (sales) arise when insiders with positive (negative) signals are present in

the market. He and Wang (1995) also show that insiders with good (bad) news tend to buy (sell) repeatedly

until their private information is revealed in the prices. The positive serial correlation in order �ow is also

consistent with strategic order splitting, i.e. a trader willing to buy for informational or non-informational

reasons and splitting his order to reduce market impact. Second, the standard deviations of the various order

�ows di¤er by exchange rates, by type of taker and across maker/taker pairs. These di¤erences will be

9Parlour and Seppi (2008) note that in a limit order book investors with active trading motives, some of which are �informed�
traders, may choose to post limit orders that are more aggresive than those a disinterested liquidity provider would use but less
aggresive than market orders.
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important in the interpretation of the upcoming VAR analysis and variance decompositions.

We show in Figure 1, from 2003 through 2007 for our three major currency pairs, the fraction of trading

volume where at least one of the two counterparties was an algorithmic trader, i.e. V ol(CH +HC +CC) as

a fraction of total volume.10 From its beginning in 2003, the fraction of trading volume involving AT grew by

the end of 2007 to near 60% for euro-dollar, and dollar-yen trading, and to about 80% for euro-yen. Figure 2

shows, for our three currency pairs, the evolution over time of the four di¤erent possible types of trades (i.e.

V ol(HH), V ol(CH), V ol(HC), and V ol(CC); as fractions of the total volume). By the end of 2007, in the

euro-dollar and dollar-yen markets, human to human trades, in black, accounted for slightly less than half

of the volume, and computer to computer trades, in green, for about ten to �fteen percent. In euro-dollar

and dollar-yen, we note that V ol(HC) and V ol(CH) are about equal to each other, i.e. computers �take�

prices posted by humans, in red, about as often as humans take prices posted by market-making computers,

in blue. The story is di¤erent for the cross-rate, the euro-yen currency pair. By the end of 2007, there

were more computer to computer trades than human to human trades. But the most common type of trade

was computers trading on prices posted by humans. We believe this re�ects computers taking advantage

of short-lived triangular arbitrage opportunities, where prices set in the euro-dollar and dollar-yen markets

are very brie�y out of line with the euro-yen cross rate. In interpreting our results later in the paper, we

will keep in mind that trading volume is largest in the euro-dollar and dollar-yen markets, and that price

discovery happens mostly in those markets, not in the cross-rate. Our conclusions based on the euro-dollar

and dollar-yen markets will then be more easily generalized than those based on the euro-yen market. Table

2 tabulates the averages of the volume fractions shown in Figures 1 and 2, both for the full 2006-2007 sample

and the shorter three-month sub-sample.

3 How Correlated Are Algorithmic Trades and Strategies?

We �rst investigate the proposition that computers tend to have trading strategies that are more correlated

than those of humans. Since the outset of the �nancial turmoil in the summer of 2007, articles in the �nancial

press have suggested that AT programs tend to be similarly designed, leading them to take the same side of

the market in times of high volatility and potentially exaggerating market movements.11

One such instance may have happened on August 16, 2007, a day of very high volatility in the dollar-yen

market. On that day, the Japanese yen appreciated sharply against the U.S. dollar around 6:00 a.m. and 12:00

p.m. (NY time), as shown in Figure 3. The �gure also shows, for each 30-minute interval in the day, computer-

taker order �ow (HC +CC) in the top panel and human-taker order �ow (HH + CH) in the lower panel.

10The data in Figures 1 and 2 are 50-day moving averages of daily values, highlighting the broad trends over time.
11See, for instance, �Algorithmic Trades Produce Snowball E¤ects on Volatility,�Financial Times, December 5, 2008.
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The two sharp exchange rate movements mentioned happened when computers, as a group, aggressively

sold dollars and bought yen. We note that computers, during these episodes, mainly traded with humans,

not with other computers. Human order �ow at those times was, in contrast, quite small, even though the

overall trading volume initiated by humans (not shown) was well above that initiated by computers (human

takers were therefore selling and buying dollars in almost equal amounts). The �taking� orders generated

by computers during those time intervals were far more correlated than the taking orders generated by

humans. After 12:00 p.m., human traders, as a whole, then began to buy dollars fairly aggressively, and the

appreciation of the yen against the dollar was partially reversed. This is only a single example, of course,

but it leads us to ask how correlated computer trades and strategies have tended to be overall.

We do not know precisely the exact mix of the various strategies used by algorithmic traders on EBS.

Traders keep the information about their own strategies con�dential, including, to some extent, from EBS,

and EBS also keeps what they know con�dential.12 However, one can get a general sense of the market

and of the strategies in conversations with market participants. About half of the algorithmic trading

volume on EBS is believed to come from what is often known as the �professional trading community,�

which primarily refers to hedge funds and commodity trading advisors (CTAs). These participants, until

very recently, could not trade manually on EBS, so all their trades were algorithmic. Some hedge funds

and CTAs seek to exploit short-lived arbitrage opportunities, including triangular arbitrage, often accessing

several trading platforms. Others implement lower-frequency strategies, often grouped under the statistical

arbitrage appellation, including carry trades, momentum trades, and strategies spanning several asset classes.

Only a very small fraction of the trading volume in our sample period is believed to have been generated

by algorithms designed to quickly react to data releases. The other half (approximately) of the algorithmic

trading volume comes from foreign exchange dealing banks, the only participants allowed on the EBS system

until 2003. Some of the banks�algorithmic trading is clearly related to activity on their own customer-to-

dealer platforms, to automate hedging activity, and to minimizing the impact of the execution of large orders.

But a sizable fraction is believed to be proprietary trading implemented algorithmically, likely using a mix

of strategies similar to those employed by hedge funds and CTAs. Overall, market participants generally

believe that the mix of algorithmic strategies used in the foreign exchange market di¤ers from that seen in

the equity market, where optimal execution algorithms are thought to be relatively more prevalent.

The August 16, 2007 episode shown above was widely viewed as the result of a sudden unwinding of the

yen-carry trade, with hedge funds and proprietary trading desks at banks rushing to close risky positions

and buying yen to pay back low-interest loans. The evidence in this case raises the possibility that many

12EBS requires that new algorithmic traders on its system �rst test their algorithms in simulated conditions. EBS then rou-
tinely monitors the trading practices of its customers. A high number of excessively short-lived quotes (�ashing) is discouraged,
as is a very low ratio of trades to quotes.
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algorithmic traders were using fairly similar carry trade and momentum strategies at the time, leading to

the high correlation of algorithmic orders and to sharp exchange rate movements. Of course, this is only

one episode in our two-year sample. Furthermore, episodes of very sharp appreciation of the yen due to the

rapid unwinding of yen carry trades have occurred on several occasions since the late 1990s, some obviously

before algorithmic trading was allowed in the market. The sharp move of the yen in October 1998, including

a 1-day appreciation of the yen against the dollar of about 7 percent, is the best-known example of such an

episode. Next, we investigate whether there is evidence that, over the entire sample, the strategies used by

algorithmic traders have tended to be more correlated than those used by human traders.

If computers and humans are indi¤erent between taking or making liquidity at a given point in time,

then we should observe that computers and humans trade with each other in proportion to their relative

presence in the market. If, on the other hand, computers tend to have more homogeneous trading strategies,

we should observe computers trading less among themselves and more with humans. At the extreme, if all

computers used the very same algorithms and had the exact same speed of execution, we would observe no

trading volume among computers. Therefore, the fraction of trades conducted between computers contains

information on how correlated their strategies are.13

To investigate the proposition that computers tend to have trading strategies that are more correlated

than those of humans we pursue the following approach. We �rst consider a simple benchmark model that

assumes random and independent matching of traders. This model allows us to determine the theoret-

ical probabilities of the four possible trades: Human-maker/human-taker, computer-maker/human-taker,

human-maker/computer-taker and computer-maker/computer-taker. We then make inferences regarding the

diversity of computer trading strategies based on how the trading pairs we observe compare to those the

benchmark model predicts.

In the benchmark model there are Hm potential human-makers (the number of humans that are standing

ready to provide liquidity), Ht potential human-takers, Cm potential computer-makers, and Ct potential

computer-takers. For a given period of time, the probability of a computer providing liquidity to a trader

is equal to Prob(computer � make) = Cm
Cm+Hm

, which we label for simplicity as �m, and the probability

of a computer taking liquidity from the market is Prob(computer � take) = Ct
Ct+Ht

= �t. The remaining

makers and takers are humans, in proportions (1 � �m) and (1 � �t), respectively. Assuming that these

events are independent, the probabilities of the four possible trades, human-maker/human-taker, computer-

13Sto¤man (2007) uses a similar method to estimate how correlated individual investor strategies are compared to institutional
investor strategies.
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maker/human-taker, human-maker/computer-taker and computer-maker/computer taker, are:

Prob(HH) = (1� �m)(1� �t)

Prob(HC) = (1� �m)�t

Prob(CH) = �m(1� �t)

Prob(CC) = �m�t:

These probabilities yield the following identity,

Prob(HH)� Prob(CC) � Prob(HC)� Prob(CH);

which can be re-written as,
Prob(HH)

Prob(CH)
� Prob(HC)

Prob(CC)
:

We label the �rst ratio, RH � Prob(HH)
Prob(CH) , the �human-taker�ratio and the second ratio, RC �

Prob(HC)
Prob(CC) ,

the �computer-taker�ratio. In a world with more human traders (both makers and takers) than computer

traders, each of these ratios will be greater than one, because Prob(HH) > Prob(CH) and Prob(HC) >

Prob(CC) i.e., computers take liquidity more from humans than from other computers, and humans take

liquidity more from humans than from computers. However, under the baseline assumptions of our random-

matching model, the identity shown above states that the ratio of ratios, R � RC
RH , will be equal to one.

In other words, humans will take liquidity from other humans in a similar proportion that computers take

liquidity from humans.

Turning to the data, under the assumption that potential human-takers are randomly matched with

potential human-makers, i.e., that the probability of a human-maker/human-taker trade is equal to the one

predicted by our model, Prob(HH) = Hm�Ht

(Hm+Cm)�(Ht+Ct)
, we can now derive implications from observations of

R, our ratio of ratios. In particular, �nding R > 1 must imply that algorithmic strategies are more correlated

than what our random matching model implies. In other words, for R > 1 we must observe that either

computers trade with each other less than expected (Prob(CC) < Cm�Ct
(Hm+Cm)�(Ht+Ct)

) or that computers trade

with humans more than expected (either Prob(CH) > Cm�Ht

(Hm+Cm)�(Ht+Ct)
or Prob(HC) > Hm�Ct

(Hm+Cm)�(Ht+Ct)
).

Our dataset allows us to estimate an ex-post proxy for R. Namely, for each trading day we estimatedRH = V ol(HH)
V ol(CH) and

dRC = V ol(HC)
V ol(CC) , where V ol (HH) is the daily trading volume between human makers

and human takers, and so forth. In Table 3 we show the mean of the daily ratio of ratios, bR =
dRCdRH ; for

each currency pair for the full sample and the three-month sub-sample. In contrast to the above theoretical
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prediction that R � RC
RH = 1, we �nd that for all currency pairs bR is statistically greater than one. This

result is very robust: in euro-dollar, all daily observations of bR are above one, and only a very small fraction
of the daily observations are below one for the other currency pairs. The results thus show that computers

do not trade with each other as much as random matching would predict. We take this as evidence that

algorithmic strategies are likely less diverse than the trading strategies used by human traders.

This �nding, combined with the observed growth in algorithmic trading over time, may raise some concerns

about the impact of AT on volatility in the foreign exchange market. As mentioned previously, some analysts

have pointed to the possible danger of having many algorithmic traders take the same side of the market at

the same moment. However, it is not a foregone conclusion that a high correlation of algorithmic strategies

should necessarily lead to higher volatility or large swings in exchange rates. Both the high correlation

of trading strategies and the widespread use of de-stabilizing strategies may need to be present to cause

higher volatility. For instance, if many algorithmic traders use similar triangular arbitrage strategies, the

high correlation of those strategies should have little impact on volatility, and may even lower volatility as

it improves the e¢ ciency of the price discovery process. Strategies designed to minimize the price impact of

trades should also, a priori, not be expected to increase volatility. In contrast, if the high correlation re�ects

a large number of algorithmic traders using the same carry trade or momentum strategies, as in the August

2007 example shown at the beginning of this section, then there may be some reasons for concern. However,

as noted earlier, episodes of sharp movements in exchange rates similar to that example have occurred in

the past on several occasions, including well before the introduction of algorithmic trading in the foreign

exchange market, suggesting that such episodes are a result of the dramatic unwinding of certain trading

strategies, regardless of whether these strategies are implemented through algorithmic trading or not. In

the next section, we explicitly investigate the relationship between the presence of algorithmic trading and

market volatility.

4 The impact of algorithmic trading on volatility

In this section, we study whether the presence of algorithmic trading is associated with disruptive market

behavior in the form of increased volatility. In particular, taking into account the potential endogeneity of

algorithmic trading activity, we test for a causal relationship between the fraction of daily algorithmic trading

relative to the overall daily volume, and daily realized volatility.
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4.1 A �rst look

We �rst take an informal look at the data. Figure 4 shows monthly observations of annualized realized

volatility (based on 1-minute returns) and of the fraction of algorithmic trading (the fraction of total trading

volume involving at least one computer trader) for each of our currency pairs. As discussed earlier, there is a

clear upward trend in the fraction of AT in the three currency pairs over 2006 and 2007. Realized volatility

in euro-dollar, dollar-yen, and euro-yen declines slightly until mid-2007, and then rises in the second half of

2007, particularly sharply in the yen exchange rates, as the �nancial crisis begins.

In Figure 5, we study whether days with high market volatility are also days with a higher-than-usual

fraction of algorithmic trading, and vice-versa. Using daily observations, we �rst sort the data into increasing

deciles of realized volatility (the decile means are shown as bars in the graphs on the left).14 We then calculate

the mean fraction of AT for the days in each of these deciles (shown as lines in the same graphs). To account

for the sharp upward trend in algorithmic participation over our sample, the daily fraction of algorithmic

trading is normalized: we divide it by a 20-day moving average centered on the chosen observation (a moving

average from day t � 10 through day t + 10, excluding day t). Next, we repeat the exercise, now sorting

the daily data into increasing deciles of the normalized fraction of AT (the decile means are shown as bars

in the graphs on the right) and calculating mean realized volatility for the days in each of these deciles

(shown as lines in the same graphs). The results in Figure 5 (both the graphs on the left and the graphs on

the right) show little or no relationship between the level of realized volatility on a particular day and the

normalized fraction of AT on that same day. The highest decile in the euro-dollar currency pair may be the

only possible exception, with a slight uptick evident in both volatility and AT activity. Finally, we note that,

in untabulated results, for each of the three currency pairs, not one of the top 10 days in realized volatility

is associated with a top ten day in the share of (normalized) AT.

The simple analysis in Figure 5 does not point to any substantial systematic link between AT activity

and volatility. However, this analysis ignores the possible, and likely, endogeneity of algorithmic activity with

regards to volatility, and therefore does not address the question of whether there is a causal relationship

between algorithmic trading and volatility. In the remainder of this section, we attempt to answer this

question through an instrumental variable analysis.

4.2 Identi�cation

The main challenge in identifying a causal relationship between algorithmic trading and volatility is the

potential endogeneity of algorithmic trading. That is, although one may conjecture that algorithmic trading

14With 498 daily observations, the �rst 9 deciles each include 50 observations, and the highest decile contains 48 observations.
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impacts volatility, it is also plausible that algorithmic trading activity may be a function of the level of

volatility. For instance, highly volatile markets may present comparative advantages to automated trading

algorithms relative to human traders, which might increase the fraction of algorithmic trading during volatile

periods. In contrast, however, one could also argue that a high level of volatility might reduce the infor-

mativeness of historical price patterns on which some trading algorithms are likely to base their decisions,

and thus reduce the e¤ectiveness of the algorithms and lead them to trade less. Thus, one can not easily

determine in what direction the bias will go in an OLS regression of volatility on the fraction of algorithmic

trading. To deal with the endogeneity issue, we adopt an instrumental variable (IV) approach as outlined

below.

We are interested in estimating the following regression equation,

RVit = �i + �iATit + 
0
i� it +

22X
k=1

�iRVit�k + �it; (1)

where i = 1; 2; 3 represents currency pairs and t = 1; :::; T , represents time. RVit is (log) realized daily

volatility, ATit is the fraction of algorithmic trading at time t in currency pair i, � it is either a time trend or

a set of time dummies that control for secular trends in the data, and �it is an error term that is assumed

to be uncorrelated with RVit�k, k � 1, but not necessarily with ATit. The large number of lags of volatility,

which covers the business days of the past month, is included to control for the strong serial correlation in

volatility (e.g. Andersen, Bollerslev, Diebold, and Labys, 2003 and Bollerslev and Wright, 2000). The exact

de�nitions of RVit, ATit, and � it are given below.

The main focus of interest is the parameter �i, which measures the impact of algorithmic trading on

volatility in currency pair i. However, since ATit and �it may be correlated, due to the potential endogeneity

discussed above, the OLS estimator of �i may be biased. In order to obtain an unbiased estimate, we

will therefore consider an instrumental variable approach. Formally, we need to �nd a variable, or set of

variables, zit, that is uncorrelated with �it (validity of the instrument) and correlated with ATit (relevance

of the instrument).

The instrument we propose to use is the fraction of trading �oors equipped to trade algorithmically on

EBS relative to the total number of trading �oors linked to the EBS system.15 That is, in order to place

algorithmic trades on EBS, a special user interface is required, and the total number of trading �oors with

such user interfaces thus provides a measure of the overall algorithmic trading �capacity� in the market.

The ratio of these algorithmic trading �oors to the total number of trading �oors provides a measure of the

15More precisely, we actually observe a time series of the number of EBS �deal codes� of each type over our sample period.
Generally speaking, EBS assigns a deal code to each trading �oor equipped with at least one of its terminals, and records
whether they are equipped to trade algorithmically or not. These data are con�dential.

12



potential fraction of algorithmic trading. Since setting up an algorithmic trading operation likely takes several

months, the number of trading �oors of each type is clearly exogenous with regards to daily market volatility;

the fraction of AT trading �oors is therefore a valid instrument. In addition, it is positively correlated with

the fraction of algorithmic trading, and it provides a relevant instrument as seen from the tests for weak

instruments discussed below.

Under the breakdown provided by EBS, there are three types of trading �oors linked to the EBS system:

purely algorithmic trading �oors, purely manual trading �oors, and dual trading �oors, those equipped to

handle both manual and algorithmic trades. We consider two natural instrumental variables: the fraction of

pure AT trading �oors over the total number of trading �oors (including pure AT, manual, and dual ones),

and the fraction of the sum of pure AT and dual trading �oors over the total number. Since it is not obvious

which variable is the better instrument, we use both simultaneously.16

The data on AT trading �oors are provided on a monthly basis, whereas the data on realized volatility and

algorithmic trading are sampled on a daily frequency. We therefore transform the trading �oor data to daily

data by repeating the monthly value each day of the month. Although this leads to a dataset of two years

of daily data, the number of daily observations (498) overstates the e¤ective number of observations, since

the coe¢ cient on AT participation will be identi�ed from monthly variations in the instrumental variables.

Transforming the instruments to a daily frequency is, however, more e¢ cient than transforming all data to

a monthly frequency, since the daily data help to identify the monthly shifts.

The instrumental variable regressions are estimated using Limited Information Maximum Likelihood

(LIML), and we test for weak instruments by comparing the �rst stage F�statistic for the excluded instru-

ments to the critical values of Stock and Yogo�s (2005) test of weak instruments. We use LIML rather than

two-stage least squares since Stock and Yogo (2005) show that the former is much less sensitive to weak

instruments than the latter (see also Stock et al., 2002).

4.3 Variable de�nitions

4.3.1 Realized Volatility

Volatility is measured as the daily realized volatility obtained from one minute returns; that is, the volatility

measure is equal to the square root of the daily sum of squared one minute log-price changes. The use of

realized volatility, based on high-frequency intra-daily returns, as an estimate of ex-post volatility is now

well established and generally considered the most precise and robust way of measuring volatility. Although

16Regressions not reported here show that using the fraction of pure AT trading �oors as a single instrument gives qualitatively
similar results to those presented below based on both instruments. Using the fraction of the sum of both pure and dual AT
trading �oors as a single instrument also leads to the same qualititative conclusion, but with more signs of weak instruments.
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many older studies relied on �ve minute returns in order to avoid contamination by market microstructure

noise (e.g. Andersen et al., 2001), recent work shows that sampling at the one-minute frequency, or even

higher frequencies, does not lead to biases in liquid markets (see, for instance, the results for liquid stocks

in Bandi and Russel, 2006, and the study by Chaboud et al., 2007, who explicitly examine EBS data on the

euro-dollar exchange rate during 2005 and �nds that sampling frequencies upwards of once every 20 seconds

does not lead to noticeable biases). Here, we restrict ourselves to using minute-by-minute data.17 Following

the common conventions in the literature on volatility modelling (e.g. Andersen, Bollerslev, Diebold, and

Labys, 2003), the realized volatility is log-transformed to obtain a more well behaved time-series.

4.3.2 Algorithmic trading

We consider two measures of the fraction of algorithmic trading, ATit, in a given currency pair: the computer-

participation fraction and the computer-taker fraction. The �rst is simply the percent of the overall trading

volume that includes an algorithmic trader as either a maker or a taker (V ol(CH + HC + CC)); that is,

the percent of trading volume where a computer is involved in at least one side of the trade. In addition,

we also consider an alternative measure de�ned as the fraction of overall trading volume that is due to a

computer-taker (V ol(HC + CC)).

4.3.3 Time controls

As seen in Figure 4, there is a clear secular trend in the computer-participation fraction,18 which is not present

in realized volatility. Euro-dollar, dollar-yen, and euro-yen volatility is trending down at the beginning of the

period and starts to trend up in the summer of 2007. In order to control for the trend in algorithmic trading

in the regression, we include either a �linear quarterly�time trend or a full set of year-quarter dummies, one

for each year-quarter pair in the data (8 dummies). That is, the linear quarterly time trend stays constant

within each quarter and increases by the same amount each quarter, whereas the year-quarter dummies allows

for a more �exible trend speci�cation that can shift in arbitrary fashion from year-quarter to year-quarter.

Both secular trend speci�cations are thus �xed within each quarter. This restriction is imposed in order to

preserve the identi�cation coming from the monthly instrumental variables. Using monthly, or �ner, time

dummies would eliminate the variation in the instrument and render the model unidenti�ed. Although it is

theoretically possible to include a monthly time trend, this would lead to very weak identi�cation empirically.

17Using realized volatility based on �ve-minute returns leads to results that are very similar to those reported below for the
one-minute returns, and the qualitative conclusions are identical.
18The same is true for the computer-taker fraction, not shown in the �gure.
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4.4 Empirical results

The regression results are presented in Table 4. We present OLS and LIML-IV results, with either the

quarterly trend or the year-quarter dummies included. We show in Panels A and B the results for the

computer-participation volume, and in Panels C and D the results for computer-taker volume. We report

results for the sample starting in January 2006 and ending in December 2007. In order to save space, we

only show the estimates of the coe¢ cients in front of the fraction of algorithmic trading volume variables.

The OLS results, which are likely to be biased due to the aforementioned endogeneity issues, show a fairly

clear pattern of a positive correlation between volatility and AT participation, with several positive and

statistically signi�cant coe¢ cients. The R2s are fairly large, re�ecting the strong serial correlation in realized

volatility, which is picked up by the lagged regressors. There are also no systematic di¤erences between the

quarterly trend and quarterly dummies speci�cations.

Turning to the more interesting IV results, which control for the endogeneity bias, the coe¢ cient estimates

change fairly dramatically. All point estimates are now negative and some of them are statistically signi�cant.

Thus, if there is a causal relationship between the fraction of algorithmic trading and the level of volatility, all

evidence suggests that it is negative, such that increased AT participation lowers the volatility in the market.

The stark di¤erence between the IV and OLS results shows the importance of controlling for endogeneity

when estimating the causal e¤ect of AT on volatility; the opposite conclusion would have been reached if

one ignored the endogeneity issue. The evidence of a statistically signi�cant relationship is fairly weak,

however, with most coe¢ cients statistically indistinguishable from zero. The more restrictive quarterly trend

speci�cation suggests a signi�cant relationship for the euro-dollar and dollar-yen, but this no longer holds if

one allows for year-quarter dummies.

To the extent that the estimated coe¢ cients are statistically signi�cant, it is important to discuss the

economic magnitude of the estimated relationship between AT and volatility. The regression is run with log

volatility rather than actual volatility, which makes it a little less straightforward to interpret the size of the

coe¢ cients. However, some back-of-the-envelope calculations can provide a rough idea. Suppose that the

coe¢ cient on computer participation is about �0:01, which is in line with the coe¢ cient estimates for the

euro-dollar. The average monthly shift in computer participation in the euro-dollar is about 1.5 percentage

points and the average log-volatility in the euro-dollar is about 3:76 (with returns calculated in basis points),

which implies an annualized volatility of about 6:82 percent. Increasing the computer participation fraction

by 1.5 percentage points decreases log-volatility by 0:015 and results in an annualized volatility of about 6:72.

Thus, a typical change in computer participation might change volatility by about a tenth of a percentage

point in annualized terms, a small e¤ect.
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The �rst stage F�statistics for the excluded instruments in the IV regressions are also reported in Panels

B and D. Stock and Yogo (2005) show that this F�statistic can be used to test for weak instruments.

Rejection of the null of weak instruments indicates that standard inference on the IV-estimated coe¢ cients

can be performed, whereas a failure to reject indicates possible size distortions in the tests of the LIML

coe¢ cients. The critical values of Stock and Yogo (2005) are designed such that they indicate a maximal

actual size for a nominal sized �ve percent test on the coe¢ cient. Thus, in the case considered here with two

excluded instruments and one endogenous regressor, a value greater than 8:68 for this F�statistic indicates

that the maximal size of a nominal 5 percent test will be no greater than 10 percent, which might be deemed

acceptable; a value greater than 5:33 for the F�statistic indicates a maximal size of 15 percent for a nominal

5 percent test. In general, the larger the F�statistic, the stronger the instruments. As is evident from the

table, there are no signs of weak instruments in the speci�cation with a quarterly trend. There are, however,

signs of weak instruments in the case with year-quarter dummies, for the euro-yen. This is not too surprising

given that the instruments only change on a monthly frequency, and the year-quarter dummies therefore put

a great deal of strain on the identi�cation mechanism. Importantly, though, the results for the two major

currency pairs are robust to any weak-instrument problems and the reported coe¢ cients and standard errors

are unbiased.

To sum up, the evidence of any causal e¤ect of algorithmic trading on volatility is not strong, but what

evidence there is points fairly consistently towards a negative relationship. There is thus no systematic

statistical evidence to back the often-voiced opinion that AT leads to increased levels of market volatility. If

anything, the contrary appears to be true.

5 Who provides liquidity during the release of public announce-

ments?

In the previous section we discuss one of the major concerns regarding algorithmic trading, namely, whether

AT causes exchange rate volatility. We now examine another major concern, whether AT improves or

reduces liquidity during stress periods, when it is arguably needed the most. To answer this question, we

cannot simply regress computer-maker volume, a proxy for liquidity provided by computers, on exchange

rate volatility, a proxy for stress periods, because, as we discussed in the previous section, algorithmic

volume and volatility are endogenous variables. In contrast to the previous section we do not estimate an IV

regression, as there are no obvious instruments for volatility.19 Instead, we follow the event study literature

19One could consider macroeconomic news announcements as potential instruments for volatility. However, macroeconomic
news announcements are exogeneous variables that cause both foreign exchange rate volatility and liquidity changes. Since we
cannot assume that the e¤ect macroeconomic news announcements have on liquidity is only due to the e¤ect macroeconomic
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and compare the liquidity provision by humans and computers during U.S. nonfarm payroll announcements,

a period of exogenously heightened volatility, to the liquidity provision by both types of agents during non-

announcement days. This comparison will help us determine who provides relatively more liquidity during

stress periods. We note that, when we consider liquidity provision by humans and computers following other

important macroeconomic news announcements, the results are qualitatively similar. However, we focus in

this section on the nonfarm payroll announcement only, as it routinely generates the highest volatility of all

US macroeconomic announcements.20

We consider two liquidity provision estimates: a one-minute estimate and a one-hour estimate. The one-

minute estimate is calculated using volume observations from 8:30 a.m. to 8.31 a.m. ET (when U.S. nonfarm

payroll is released), while the one-hour estimate is calculated using observations from 8:25 am to 9:24 am

ET. We de�ne the one-minute (one-hour) liquidity provision by humans, LH, as the sum of human-maker

volume, V ol(HH+HC), divided by total volume during that period, and the one-minute (one-hour) liquidity

provision by computers, LC, as the sum of computer-maker volume, V ol(CC+CH), divided by total volume

during that period. Similar to the liquidity provision measures, we de�ne the one-minute volatility as the

squared 1-minute return from 8:30 a.m. to 8.31 a.m. ET and the one-hour volatility as the sum of squared

1-minute returns from 8:25 am to 9:24 am ET.

To compare liquidity provision by humans and computers during announcement times to liquidity provi-

sion during (more tranquil) non-announcement times, we could estimate the average liquidity provision during

announcement times and compare it to the average liquidity provision during non-announcement times, with

both means taken over the entire sample period. However, as we discussed previously, exchange rate trading

volumes and the shares of liquidity provision by humans and computers exhibit clear trends over our sample,

making the comparison of the two di¤erent means problematic. Alternatively, and this is the methodology

we follow, on each announcement day we estimate the ratio of liquidity provision on that day relative to the

liquidity provision on days surrounding the announcement. This amounts to using a non-parametric approach

to detrend the data. The time series of these ratios will be stationary, and we can then test the hypothe-

sis that the ratio is greater than one. Speci�cally, we divide the one-minute (one-hour) liquidity provision

by humans, LHa, and computers, LCa, estimated on announcement day t by the one-minute (one-hour)

liquidity provision by humans, LHn, and computers, LCn, respectively, estimated during the surrounding

non-announcement day period, de�ned as 10 business days before and after a nonfarm payroll release date

t. The liquidity provision measures on the non-announcement days are calculated in the same manner as

on the announcement days, using data only for the periods 8:30 a.m. to 8.31 a.m. ET or 8:25 am to 9:24

news announcements have on volatility, the exclusion restriction required by IV estimation is violated.
20Andersen and Bollerslev (1998), among others, refer to the nonfarm payroll report as the �king�of announcements, because

of the signi�cant sensitivity of most asset markets to its release.
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am ET, for the one-minute and one-hour measures, respectively.21 We follow the same procedure with our

one-minute and one-hour volatility estimates.

Consistent with previous studies, we show in Table 5 Panel A that the one-hour volatility on nonfarm

payroll announcement days is 3 to 6 times larger than during non-announcement days. The one-minute

volatility is 15 to 30 times larger during announcement days compared to non-announcement days. As

expected, given the fact that we focus on a U.S. data release, the volatility increase is smaller in the cross-

rate, the euro-yen exchange rate, than in the euro-dollar and yen-dollar exchange rates. Focusing on the

statistically signi�cant estimates, we show in Table 5 Panel B that, as a share of total volume, human-

maker volume tends to increase during the minute of the announcement (the one-minute ratio LHa

LHn
is greater

than one), while computer-maker volume tends to decrease (the one-minute ratio LCa
LCn

is less than one).

Interestingly, this pattern is reversed when we focus on the one-hour volume estimates for the euro-dollar

and euro-yen exchange rate markets. In relative terms, computers do not increase their provision of liquidity

as much as humans do during the minute following the announcement. However, computers increase their

provision of liquidity relatively more than humans do over the entire hour following the announcement, a

period when market volatility remains quite elevated.

We note that, over our sample period, the U.S. nonfarm payroll data releases were clearly the most

anticipated and most in�uential U.S. macroeconomic data releases. They often generated a large initial

sharp movement in exchange rates, followed by an extended period of volatility. The behavior of computer

traders observed in the �rst minute could re�ect the fact that many algorithms are not designed to react

to the sharp, almost discrete, moves in exchange rates that often come at the precise moment of the data

release. Some algorithmic traders may then prefer to pull back from the market a few seconds before 8:30

a.m. ET on days of nonfarm payroll announcements, resuming trading once the risk of a sharp initial price

movement has passed. But the data show that algorithmic traders, as a whole, do not shrink back from

providing liquidity during the extended period of volatility that follows the data releases.

6 Price Discovery

In the previous three sections, we analyze questions that are primarily motivated by practical concerns

regarding algorithmic trading, such as whether computer traders induce volatility or reduce liquidity. In this

section we turn to questions that are driven more by the market microstructure literature, but that also lead

21For simplicity, we label the 10 business days before and after the nonfarm payroll announcement as non-announcement days.
However, during this 20-day period there are both days with no macroeconomic news and days with news. For instance, every
Thursday, including the day before the monthly nonfarm payroll number is released, initial jobless claims are released. Thus,
our estimation will likely be biased towards not �nding statistically di¤erent behavior across the two periods. As we show in
Table 5, volatility is, on average, much lower during this 20-day period than on nonfarm payroll days, and therefore the period
still serves as a good benchmark.
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to interesting practical insights regarding the e¤ects and nature of algorithmic trading. In particular, we

study price discovery within a vector autoregressive framework, which enables us to evaluate to what extent

humans or computers represent the �informed�traders in the market. Our �ndings reveal several interesting

features regarding the impact of algorithmic trades and the order placement behavior of computer traders.

6.1 Who are the �informed�traders, humans or computers?

We �rst investigate whether human or computer trades have a more �permanent�impact on prices. To this

end, we estimate return-order �ow dynamics in a structural vector autoregressive (VAR) framework in the

tradition of Hasbrouck (1991a), where returns are contemporaneously a¤ected by order �ow, but order �ow

is not contemporaneously a¤ected by returns. Similar to Hasbrouck�s (1996) decomposition of program and

nonprogram order �ow, we decompose order �ow into two components: human-taker
�
OF (ht) = HH + CH

�
and computer-taker

�
OF (ct) = HC + CC

�
, and thus we estimate for each currency i one return equation

and two order �ow equations. In light of Evans and Lyons (2008) �ndings, we estimate the structural VAR

with U.S. macroeconomic news surprises as exogenous variables that a¤ect both returns and order �ow.

Speci�cally, we estimate the following system of equations for each currency i,
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Here rit is the 1-minute exchange rate return for currency i at time t; OFhtit is the currency i human-taker order

�ow at time t; OF ctit is the currency i computer-taker order �ow at time t; and Skt is the macroeconomic news

announcement surprise for announcement k at time t de�ned as the di¤erence between the announcement

realization and its corresponding market expectation. We use Bloomberg�s real-time data on the expectations

and realizations of K = 28 U.S. macroeconomic fundamentals to calculate Skt. The 28 announcements we

consider are similar to those in Andersen et al. (2003, 2007) and Pasquariello and Vega (2007).22 Since units

of measurement vary across macroeconomic variables, we standardize the resulting surprises by dividing each

22Our list of U.S. macroeconomic news announcements is the same as the list of announcements in Andersen et al. (2007) and
Pasquariello and Vega (2007) with the addition of three announcements: unemployment rate, core PPI and core CPI. Andersen
et al. (2007) and Pasquariello and Vega (2007) use International Money Market Services (MMS) data on the expectations of
U.S. macroeconomic fundamentals. In contrast, we use Bloomberg data because the MMS data are no longer available after
2003. Bloomberg provides survey data similar to those MMS previously provided.
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of them by their sample standard deviation. Economic theory suggests that we should also include foreign

macroeconomic news announcements in equation (2). However, previous studies �nd that exchange rates do

not respond much to non-U.S. macroeconomic announcements, even at high frequencies (e.g. Andersen et

al., 2003), so we expect the omitted variable bias in our speci�cation to be small.

The underlying economic model is based on continuous time, and we thus estimate the VAR using the

highest sample frequency available to us, minute-by-minute data. The estimation period is restricted to the

2006�2007 sample, and the total number of observations for each currency pair is 717; 120 in the full sample

and 89; 280 in the three-month sub-sample (September, October and November of 2007). In both samples,

20 lags are included in the estimated VARs, i.e. J = 20.

Our speci�cation in equation (2) does not allow human-taker order �ow to contemporaneously a¤ect

computer-taker order �ow or vice-versa. The advantage of this approach is that we can estimate the impulse

response functions without giving more importance to a particular type of order �ow, i.e., we do not need to

assume a particular ordering of the human-taker and computer-taker order �ow in the VAR. The disadvantage

is that the human-taker and computer-taker order �ow shocks may not be orthogonal. However, in our

estimation this does not appear to be a problem, as our residuals are found to be approximately orthogonal

(the correlation between the human-taker and computer-taker equation residuals are -0.001, -0.1 and -0.1 for

the euro-dollar, yen-dollar, and euro-yen exchange rates respectively). As a robustness check, we also estimate

the VAR with two di¤erent orderings. We �rst assume human-taker order �ow a¤ects computer-taker order

�ow contemporaneously, and then assume the opposite ordering. This latter approach allows us to compute

upper and lower bound impulse responses. These results are presented in the Appendix, and show that the

results presented here are not sensitive to alternative identi�cation schemes in the VAR.

Before considering the impulse response functions and the variance decompositions, we brie�y summarize

the main lessons from the estimated coe¢ cients in the VAR. Focusing on the return equation, we �nd that

minute-by-minute returns tend to be negatively serially correlated, with the coe¢ cient on the �rst own lag

varying between �0:08 and �0:15; there is thus some evidence of mean reversion in the exchange rates at

these high frequencies, which is a well-know empirical �nding. Both order �ows are signi�cant predictors of

returns. The price impact of the lagged order �ows range from around 4 to 18 basis points per billion units

of order �ow (denominated in the base currency), as compared to a range of approximately 28 � 100 basis

points in the contemporaneous order �ow. As theory would predict, we �nd that U.S. macroeconomic news

announcements a¤ect less the euro-yen exchange rate (i.e., the R2 of regressing the euro-yen exchange rate on

macroeconomic news surprises and restricting the sample to announcement-only observations is 23%) than

the euro-dollar and dollar-yen exchange rates (i.e., the R2s of an announcement-only sample are 60% and

59%, respectively). However, U.S. macroeconomic news announcements still have an e¤ect on the cross-rate
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to the extent that the U.S. economy is more or less correlated with the Japanese or the Euro-area economy.

Focusing on the order-�ow equations, we �nd that the �rst own lag in both order �ow equations is

always highly signi�cant, and typically around 0:1 for all currency pairs. There is thus a sizeable �rst-order

autocorrelation in the human-taker and computer-taker order �ows. The coe¢ cients on the �rst order cross-

lags in the order �ow regressions are most often substantially smaller than the coe¢ cient on the own lag and

vary in signs. Lagged returns have a small but positive impact on order �ow, suggestive of a form of trend

chasing by both computers and humans in their order placement.

We note that despite the strongly signi�cant estimates that are recorded in the VAR estimations, the

amount of variation in the order �ow and return variables that is captured by their lagged values is very

limited. The R2 for the estimated equations with only lagged variables are typically around three to ten

percent for the order �ow equations, and between one and three percent for the return equations. This can

be compared to an R2 of 20 to 30 percent when one includes contemporaneous order �ow.

6.2 Impulse Response Function and Variance Decomposition Results

As originally suggested by Hasbrouck (1991b), we use the impulse response functions to assess the price

impact of various order �ow types, and the variance decompositions to measure the relative importance of

the variables driving foreign exchange returns. In Table 6 Panel A, we show the results from the impulse

response analysis based on the estimation of equation (2), using the full sample for 2006-2007 and the three-

month sub-sample, when the size of the shock is the same across the di¤erent types of order �ow: a one billion

base currency shock to order �ow. We also show the results when the size of the shock varies according to

the average size shock: a one standard deviation base currency shock to order �ow (Table 6 Panel B).

We show both the short-run (instantaneous) impulse responses, the long-run cumulative responses, and the

di¤erence between the two responses. The long-run statistics are calculated after 30-minutes, at which point

the cumulative impulse responses have converged and can thus be interpreted as the long-run total impact

of the shock. All the responses are measured in basis points. The standard errors reported in the tables are

calculated by bootstrapping, using 200 repetitions.

Starting with a hypothetical shock of one billion base currency order �ow, the results in Table 6 Panel

A, show that the immediate response of prices to human-taker order �ow is often larger than the immediate

response to computer-taker order �ow. This may partially be attributed to the fact that some of the algorith-

mic trading is used for the optimal execution of large orders at a minimum cost. Algorithmic trades appear

to be successful in that endeavor, with computers likely breaking up the larger orders and timing the smaller

trades to minimize the impact on prices. We emphasize, though, that the di¤erences in price impact, which
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range from 1 to 8 basis points, are not very large in economic terms. Furthermore, we �nd that the result can

be reversed in the long-run and in the three-month sub-sample. For example, the euro-dollar human-taker

price impact is larger than the computer-taker price impact in the short-run, but the opposite is true in the

long-run and in the three-month sub-sample.

In contrast to these results, the response to a hypothetical one standard deviation shock to the di¤erent

order �ows (Table 6 Panel B) consistently shows that in the euro-dollar and dollar-yen markets, humans

have a bigger impact on prices than computers and the di¤erences are relatively large. For example, a one

standard deviation shock to human-taker order �ow in the yen-dollar exchange rate market has an average

long-run e¤ect of 0.9 basis points compared to an average e¤ect of 0.3 basis points for computer-taker order

�ow. Interestingly, the di¤erence in price impact in the cross-rate, the euro-yen exchange rate, is very

small. In this market, computers have a clear advantage over humans in detecting and reacting more quickly

to triangular arbitrage opportunities so that a large proportion of algorithmic trading contributes to more

e¢ cient price discovery. It is then not so surprising that in this market computers and humans, on average,

appear to be equally �informed.�

In Table 7 we report the fraction of the total (long-run) variance in returns that can be attributed to

innovations in human-taker order �ow and computer-taker order �ow.23 Following Hasbrouck (1991b), we

interpret this variance decomposition as a summary measure of the informativeness of trades, and thus, in the

current context, a comparison of the relative informativeness of the di¤erent types of order �ow. Consistent

with the results from the impulse response functions based on a one standard deviation shock to order �ow, we

�nd that in the euro-dollar and dollar-yen exchange rate markets human-taker order �ow explains much more

of the total variance in returns than computer-taker order �ow. Speci�cally, human-taker order �ow explains

about 30 percent of the total variance in returns compared to only 4 percent explained by computer-taker

order �ow.

The fact that human-taker order �ow explains a bigger portion of total variance in returns is not surprising

because human-taker volume is about 75 percent of total volume in these two markets in the full sample period

and about 65 percent of total volume in the three-month sub-sample (see Table 2). Moreover large buy (sell)

orders tend to be human-taker orders, i.e. we show in Table 1 that the standard deviation of human-taker

order �ow is twice as big as that of the computer-taker order �ow. But, do computers tend to contribute

�disproportionately�little to the long-run variance in returns relative to their trading volume? To answer this

question we do a back-of-the-envelope calculation. We compute the relative share of the explained variance

that is due to computer-taker order �ow as the percent of total variation in returns explained by computer-

23The variance decompositions are virtually identical in the short- and long-run and thus we only show the long-run decom-
position results.
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taker order �ow divided by the percent of total variation in returns explained jointly by both human-taker

and computer-taker order �ow. For example, this relative share is 14% = 100 � 4:74
34 (Table 7) in the euro-

dollar market. We can then compare this relative share to the fraction of overall trading volume that is due

to computer-taker volume, which we show in Table 2. In the full 2006-2007 sample for the euro-dollar and

the dollar-yen currency pairs, the fraction of volume due to computer-takers is about twice as large as the

fraction of the explained long-run variance that is due to computer-taker order �ow. In the euro-yen, the

fractions are approximately equal. These results are fairly similar in the three-month sub-sample, although

the fraction of explained variance has increased somewhat compared to the volume fraction. Thus, in the

two major currency pairs, there is evidence that computer-taker order �ow contributes relatively less to the

variation in returns than one would infer from just looking at the proportion of computer-taker volume.

6.3 Are liquidity providers �uninformed�?

We now turn to examine whether liquidity providers post quotes strategically. To this end we augment

equation (2) and decompose order �ow into four components. Speci�cally, we estimate the following system

of equations for each currency i;
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where rit is the 1-minute exchange rate return for currency i at time t; L = 4, OF (1)it = OFHHit is the

currency i human-maker/human-taker order �ow at time t; OF (2)it = OFCHit is the currency i computer-

maker/human-taker order �ow at time t; OF (3)it = OFHCit is the currency i human-maker/computer-taker

order �ow at time t; OF (4)it = OFCCit is the currency i computer-maker/computer-taker order �ow at time t;

Skt is the macroeconomic news announcement surprise for announcement k at time t.24

In addition to identifying whether traders, on average, have a more permanent impact on prices when

trading with humans than with computers, this speci�cation also allows us to observe the e¤ect order �ow

has on prices when, for instance, no party has a speed advantage, i.e. both parties are humans or both parties

are computers, and when either the maker has a speed advantage, CH, or the taker has a speed advantage,

HC. This distinction may be particularly useful when analyzing the cross-rate, where computers likely have

24 In the Appendix, we analyze the robustness of this structural VAR by also estimating impulse responses and variance
decompositions from all possible triangular identi�cation schemes, only imposing that returns are ordered last in the VAR.
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a clear advantage over humans in detecting short-lived triangular arbitrage opportunities.

Starting with a hypothetical shock of one billion base currency order �ow, the results in Table 8 Panel A

show that there is no clear pattern in which order �ow impacts prices the most. However, the dynamics of the

VAR system help reveal an interesting �nding: There is a consistent and often large short-run over-reaction

to CC and CH shocks. That is, as seen in Table 8, the short run response to a CC or CH order �ow shock

is always larger than the long-run response, and sometimes substantially so. The euro-dollar in the sample

covering September, October, and November of 2007 provides an extreme case where the initial reaction to

a one billion dollar CC shock is a 22 basis point move, but the long-run cumulative reaction is just 6 basis

points. Interestingly, the opposite pattern is true for the HH order �ow shocks, where there is always an

initial under -reaction in returns. To the extent that an over-reaction of prices to order �ow is suggestive of

the presence of liquidity traders, these impulse response patterns suggest that computers provide liquidity

when the probability of trading with an informed trader is low.25

The response to a hypothetical one standard deviation shock to the di¤erent order �ows consistently

shows that HH order �ow has a bigger impact on prices than CC order �ow (Table 8 Panel B) and that

the di¤erences are large. In particular, a one standard deviation shock to HH order �ow has an average

long-run e¤ect of 0.6 basis points across currencies compared to a one standard deviation shock to CC order

�ow, which has an average e¤ect of 0.1 basis points. Interestingly, we observe that when humans trade with

other humans they in�uence prices more than when they trade with computers (the impact of HH on prices

is bigger than the impact of CH on prices), and when computers trade with other computers they in�uence

prices less than when they trade with humans (the impact of CC on prices is smaller than the impact of HC

on prices). Our interpretation is that computers provide liquidity more strategically than humans, so that the

counterparty cannot a¤ect prices as much. This interpretation is consistent with the over-reaction of prices

to CC and CH order �ow described above: Computers appear to provide liquidity when adverse selection

costs are low. This �nding relates to the literature that proposes to depart from the prevalent assumption

that liquidity providers in limit order books are passive.26

We also �nd that the price response to order �ow varies across currencies as these markets di¤er along

several dimensions. Trading volume is largest in the euro-dollar and dollar-yen markets, compared to the

euro-yen market, and price discovery clearly happens mostly in the two largest markets. In the cross-rate

25Dynamic learning models with informed and uninformed investors predict that prices will temporarily over-react to unin-
formed order �ow and under-react to informed order �ow (e.g., Albuquerque and Miao, 2008). We note that the over- and
under-reaction of prices to a particular type of order �ow is di¤erent from the over- and under-reaction of prices to public news,
which are both considered a sign of market ine¢ ciency. Order �ow types are not public knowledge, so that agents cannot trade
on this information.
26For example, Chakravarty and Holden (1995), Kumar and Seppi (1994), Kaniel and Liu (2006), and Goettler, Parlour and

Rajan (2007) allow informed investors to use both limit and market orders. Bloom�eld, O�Hara and Saar (2005) argue that
informed traders are natural liquidity providers and Angel (1994) and Harris (1998) show that informed investors can optimally
use limit orders when private information is su¢ ciently persistent.
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market, the euro-yen, computers have a speed advantage over humans in pro�ting from triangular arbitrage

opportunities, where prices set in the euro-dollar and dollar-yen markets are very brie�y out of line with the

euro-yen rate. Consistent with this speed advantage we observe that human-maker/computer-taker order

�ow has a larger price impact in the cross-rate market than in the other two markets.

In addition to the impulse response functions, we also report the long-run forecast variance decomposition

of returns in Table 9 for both the full sample and the three-month sub-sample. Consistent with the impulse

response functions to a one standard deviation shock to order �ow, the HH order �ow makes up the dominant

part of the variance share in the euro-dollar and dollar-yen exchange rate markets. In the last three months

of the sample, this share has generally decreased. The share of variance in returns that can be attributed

to the CC order �ow is surprisingly small, especially in the latter sub-sample, given that this category of

trades represents a sizeable fraction of overall volume of trade during the last months of 2007, as seen in

Table 2. The mixed order �ow (CH and HC order �ow) typically contributes with about the same share to

the explained variance in the euro-dollar and dollar-yen exchange rate markets. In contrast, in the euro-yen

exchange rate market HC order �ow makes up the dominant part of the variance share, which is consistent

with our discussion of computers taking advantage of triangular arbitrage opportunities in this market.

Overall, about 15 to 35 percent of the total variation in returns can be attributed to shocks to the four

order �ows. However, in most currency pairs, very little of this ultimate long-run price discovery that occurs

via order �ow does so via the CC order �ow. Similar to Table 7, we also report in Table 9 the fraction of

the explained share of the return variance that can be attributed to the di¤erent order �ow combinations.

Comparing these to the fraction of overall volume that is due to these combinations of computers and humans,

reported in Table 2, gives an idea of whether the di¤erent order �ow combinations contribute proportionately

to the variance in returns. It is clear that CC order �ow tends to contribute disproportionately little to the

long-run variance of returns, and that HH order �ow often contributes disproportionately much.

7 Conclusion

Using highly-detailed high-frequency trading data for three major exchange rates over 2006 and 2007, we

analyze the impact of the growth of algorithmic trading on the spot interdealer foreign exchange market. We

focus on the following questions: (i) Are the algorithms underlying the computer-generated trades similar

enough to result in highly correlated strategies, which some fear may cause disruptive market behavior?

(ii) Does algorithmic trading increase volatility in the market, perhaps as a result of the previous concern?

(iii) Do algorithmic traders improve or reduce market liquidity at times of market stress? (iv) Are human

or computer traders the more �informed� traders in the market, i.e. who has the most impact on price
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discovery? (v) Is there evidence in this market that the liquidity providers (the �makers�) and not just the

liquidity �takers�, are informed, and do computer makers post orders more strategically than human makers?

The �rst three questions directly address concerns that have been raised recently in the �nancial press,

especially in conjunction with the current crisis, while the last two questions relate more to the empirical

market microstructure literature on price discovery and order placement. Together, the analysis of these

questions brings new and interesting results to the table, both from a practical and academic perspective, in

an area where almost no formal research has been available.

Our empirical results provide evidence that algorithmic trades are more correlated than non-algorithmic

trades, suggesting that the trading strategies used by the computer traders are less diverse than those

of their human counterparts. Although this may cause some concerns regarding the disruptive potential of

computer-generated trades, we do not �nd evidence of a positive causal relationship between the proportion of

algorithmic trading in the market and the level of volatility; if anything, the evidence points towards a negative

relationship, suggesting that the presence of algorithmic trading reduces volatility. As for the provision of

market liquidity, we �nd evidence that, compared to non-algorithmic traders, algorithmic traders reduce their

share of liquidity provision in the minute following major data announcements, when the probability of a

price jump is very high. However, they increase their share of liquidity provision to the market over the entire

hour following these announcements, which is almost always a period of elevated volatility. This empirical

evidence thus suggests that computers do provide liquidity during periods of market stress.

To address the last two questions (price discovery and order placement), we use a high-frequency VAR

framework in the tradition of Hasbrouck (1991a). We �nd that non-algorithmic trades account for a sub-

stantially larger share of the price movements in the euro-dollar and yen-dollar exchange rate markets than

would be expected given the sizable fraction of algorithmic trades. Non-algorithmic traders are the �in-

formed�traders in these two markets, driving price discovery. In the cross-rate, the euro-yen exchange rate

market, we �nd that computers and humans are equally �informed,� likely because of the large proportion

of algorithmic trades dedicated to search for triangular arbitrage opportunities. Finally, we �nd that, on

average, computer takers or human takers that trade on prices posted by computers do not impact prices

as much as they do when they trade on prices posted by humans. One interpretation of this result is that

computers place limit orders more strategically than humans do. This �nding dovetails with the literature

on limit order books that relaxes the common modeling assumption that liquidity providers are passive.

Overall, this study therefore provides essentially no evidence to bolster the widespread concerns about

the e¤ect of algorithmic trading on the functioning of �nancial markets. The lesson we take from our analysis

of algorithmic trading in the interdealer foreign exchange market is that it is more how algorithmic trading

is used and what it is predominantly designed to achieve that determines its impact on the market, and not
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primarily whether or not the order �ow reaching the market is generated at high frequency by computers.

In the global interdealer foreign exchange market, the rapid growth of algorithmic trading has not come at

the cost of lower market quality, at least not in the data we have seen so far. Given the constant search

for execution speed in �nancial markets and the increasing availability of algorithmic trading technology, it

is likely that, absent regulatory intervention, the share of algorithmic trading across most �nancial markets

will continue to grow. Our study o¤ers hope that the growing presence of algorithmic trading will not have

a negative impact on global �nancial markets.

Appendix: Robustness check of the VAR results

The impulse responses and variance decompositions in the above VAR analyses are derived under the as-

sumption that there are no contemporaneous interactions between the di¤erent order �ow components. This

identifying assumption is appealing because it treats the order �ow components symmetrically and ensures

that the results are not driven by the ordering of the order �ows in the VAR. On the other hand, it cannot

be ruled out that one order �ow component a¤ects another one contemporaneously within the one-minute

timespan over which each observation is sampled. If this is the case, the VAR speci�cation that we use above

would be too restrictive and the resulting impulse responses and variance decompositions would likely be

biased. As discussed above, given the fairly low correlation that we observe in the VAR residuals for the

di¤erent order �ow equations, this does not appear to be a major concern, but since these correlations are

not identical to zero it is still possible that other identi�cation schemes would lead to di¤erent conclusions.

In this section we therefore perform a comprehensive robustness check of the VAR results by calculating

upper and lower bounds on the impulse responses and variance decompositions. In particular, we consider

all possible orderings of the order �ows in the VARs, while imposing a triangular structure. That is, we still

assume that returns are ordered last in the VAR and are thus a¤ected contemporaneously by all order �ow

components, but we then consider all possible orderings for the di¤erent order �ows. In the case where we

split order �ow into human and computer order �ow, this results in just two di¤erent speci�cations� one

where computer order �ow a¤ects human order �ow contemporaneously but contemporaneous human order

�ow has no impact on computer order �ow, and the opposite speci�cation where human order �ow a¤ects

computer order �ow contemporaneously. In the case with four di¤erent order �ows, there are 24 di¤erent

orderings, when one allows for all possible triangular identi�cation schemes, only imposing that returns are

ordered last. From each of these speci�cations, we calculate impulse responses and variance decompositions.

The minimum and maximum of these over all speci�cations are reported in Tables A1 and A2 for the two

order �ow case and in Tables A3 and A4 in the four order �ow case.
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Starting with the simpler case with order �ow split up into human or computer order �ow, Tables A1

and A2 con�rm our conjecture that the low correlation in the VAR residuals render the VAR speci�cation

very robust to the ordering of the order �ows. The min-max intervals shown in the two tables are generally

very tight and all of our earlier qualitative conclusions that we draw from our preferred structural VAR

speci�cation holds also under these alternative orderings.

Turning to the VAR analysis with four separate order �ow, the number of possible orderings increases

dramatically to 24. This large number of possible speci�cations inevitably results in wider min-max intervals,

even though the correlations in the VAR residuals are generally small. In order to usefully interpret these

results, we check whether our main qualitative conclusions from our preferred structural speci�cation analyzed

above also holds up, in a min-max sense, under all possible orderings. Our �rst main result in the above

analysis was that there is an initial over-reaction to CC and CH shocks and an initial under-reaction to HH

shocks. As seen in Table A3, these �ndings are mostly supported by the min-max results as well. The only

exceptions recorded are for the euro-yen cross rate, where the under-reaction to CC and CH shocks is also

much weaker in the original results in Table 8. It is also evident from Table A3, Panel B, that the min-max

results support the �nding that a one standard deviation shock to HH has a substantially bigger impact on

returns than a CC shock. In addition, Table A3, Panel B, also shows that the impact of the HH shock tends

to be larger than the CH impact, and the CC impact tends to be smaller than the HC impact. Finally,

the results in Table A3 also mostly support the �nding that the reactions to HC order �ow are greater in

the euro-yen cross currency than in the two main currency pairs, although some overlap is seen for the one

standard deviation shock in Panel B.

Table A4 shows the corresponding min-max results for the variance decomposition. Again, our main

conclusions are mostly supported in a min-max sense. HH makes up the largest share of the explained

variance in the two main currency pairs in the full sample, although in the three-month sub-sample there

is some overlap between the min-max intervals for the HH order �ow and the HC order �ow. CC always

contributes a very small share of the explained variance and HC always contributes a fairly substantial share

in the cross currency.

In summary, these robustness checks show that our main VAR used for examining price discovery (equation

(2)), using human and computer order �ows, is not particularly sensitive to the exact identi�cation scheme

that is used. The results presented in Tables 6 and 7 thus appear to be robust to alternative orderings in the

VAR. Our second VAR speci�cation (equation (3)), which we use to analyze strategic liquidity provision, is

a little more sensitive to the exact identi�cation scheme used, but the min-max results are still overall very

supportive of our main conclusions.
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Table A1: Min-max impulse responses from the VAR speci�cation with human-taker and computer-taker
order �ow. The table shows the minimum and maximum triangular impulse responses for returns as a result
of shocks to the human-taker order �ow (HH + CH) or computer-taker (CC + HC) order �ow, denoted
H-taker and C-taker in the table headings, respectively. In Panel A we show the return response, in basis
points, to a one-billion base-currency shock to one of the order �ows. In Panel B we show the return response,
in basis points, to a one standard deviation shock to one of the order �ows. We show the results for the
full 2006-2007 sample and for the three-month sub-sample, which only uses data from September, October,
and November of 2007. For each currency pair we show the short-run (immediate) response of returns; the
corresponding cumulative long-run response of returns, calculated as the cumulative impact of the shock after
30 minutes; and the di¤erence between the cumulative long-run response in returns minus the immediate
response of returns, i.e., we provide the extent of over-reaction or under-reaction to an order �ow shock. There
are a total of 717; 120 minute-by-minute observations in the full two-year sample and 89; 280 observations in
the three-month sub-sample.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker

Panel A: One billion base-currency shock
USD/EUR

Short run [28:05; 28:06] [26:84; 26:94] [23:11; 23:20] [24:89; 25:22]

Long run [27:85; 27:87] [32:26; 32:35] [24:06; 24:16] [31:04; 31:38]

Di¤erence [�0:20;�0:20] [5:42; 5:42] [0:94; 0:96] [6:14; 6:16]

JPY/USD
Short run [44:96; 46:76] [28:92; 39:81] [44:99; 48:02] [33:45; 44:88]

Long run [45:50; 47:50] [33:21; 44:27] [46:80; 49:54] [28:83; 40:63]

Di¤erence [0:54; 0:74] [4:29; 4:46] [1:52; 1:81] [�4:62;�4:25]
JPY/EUR

Short run [90:18; 99:32] [90:50; 102:71] [109:04; 124:02] [101:74; 115:52]

Long run [98:30; 108:07] [96:57; 109:85] [116:54; 132:53] [108:54; 123:26]

Di¤erence [8:12; 8:75] [6:07; 7:14] [7:50; 8:51] [6:79; 7:74]

Panel B: One standard deviation shock
USD/EUR

Short run [0:6613; 0:6616] [0:2630; 0:2639] [0:6023; 0:6045] [0:3139; 0:3180]

Long run [0:6566; 0:6570] [0:3161; 0:3170] [0:6269; 0:6296] [0:3914; 0:3957]

Di¤erence [�0:0047;�0:0046] [0:0531; 0:0531] [0:0246; 0:0251] [0:0775; 0:0777]

JPY/USD
Short run [0:8370; 0:8660] [0:2375; 0:3251] [0:9594; 1:0158] [0:3798; 0:5056]

Long run [0:8470; 0:8796] [0:2727; 0:3616] [0:9980; 1:0480] [0:3274; 0:4577]

Di¤erence [0:0100; 0:0137] [0:0352; 0:0364] [0:0322; 0:0386] [�0:0524;�0:0479]
JPY/EUR

Short run [0:5060; 0:5541] [0:4318; 0:4874] [0:6671; 0:7532] [0:6725; 0:7581]

Long run [0:5515; 0:6030] [0:4608; 0:5213] [0:7130; 0:8049] [0:7174; 0:8089]

Di¤erence [0:0455; 0:0488] [0:0289; 0:0339] [0:0459; 0:0517] [0:0449; 0:0508]
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Table A2: Min-max variance decompositions from the VAR speci�cation with human-taker and computer-
taker order �ow. The table shows the minimum and maximum triangular long-run variance decomposition
of returns, expressed in percent and calculated at the 30 minute horizon. That is, the table shows the
proportion of the long-run variation in returns that can be attributed to shocks to the human-taker order
�ow (HH + CH) and the computer-taker (CC +HC) order �ow, denoted H-taker and C-taker in the table
headings, respectively. For each currency pair we show the actual variance decomposition, and the proportion
of the explained variance in returns that can be attributed to each order �ow type. That is, we re-scale the
variance decompositions so that they add up to 100 percent. We show results for the full 2006-2007 sample
and for the three-month sub-sample, which only uses data from September, October, and November of
2007. There are a total of 717; 120 minute-by-minute observations in the full two-year sample and 89; 280
observations in the three-month sub-sample.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker

USD/EUR
Variance decomposition [29:25; 29:28] [4:71; 4:74] [25:78; 25:96] [7:08; 7:26]

Proportion of explained share [86:04; 86:14] [13:86; 13:96] [78:02; 78:58] [21:42; 21:98]

JPY/USD
Variance decomposition [27:71; 29:67] [2:31; 4:28] [26:03; 29:19] [4:21; 7:37]

Proportion of explained share [86:63; 92:77] [7:23; 13:37] [77:94; 87:40] [12:60; 22:06]

JPY/EUR
Variance decomposition [10:15; 12:16] [7:37; 9:39] [9:94; 12:67] [10:15; 12:88]

Proportion of explained share [51:93; 62:27] [37:73; 48:07] [43:55; 55:53] [44:47; 56:45]
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Table 1: Summary statistics for the one-minute return and order �ow data. The mean and standard deviation,
as well as the �rst-order autocorrelation, �, are shown for each variable and currency pair. The returns are
expressed in basis points and the order �ows in millions of the base currency. The summary statistics are given
for both the full 2006-2007 sample, as well as for the three-month sub-sample, which only uses observations
from September, October, and November of 2007. The �rst two rows for each currency show the summary
statistics for returns and the total market-wide order �ow. The following two rows give the results for the
order �ows broken down into human-takers and computer-takers and the last four rows show the results for
the order �ow decomposed into each maker-taker pair. There are a total of 717; 120 observations in the full
two-year sample and 89; 280 observations in the three-month sub sample. We show the statistical signi�cance
of the �rst order autocorrelation. The ���, ��, and � represent signi�cance at the 1, 5, and 10 percent level,
respectively.

Full 2006-2007 Sample 3-month sub sample
Variable Mean Std. dev. � Mean Std. dev. �

USD/EUR
Returns 0:0030 1:2398 �0:005��� 0:0080 1:2057 0:007��

Total order �ow (HH + CH +HC + CC) 0:0315 25:9455 0:150��� �0:0937 29:7065 0:174���

H-taker (HH + CH) 0:0413 23:977 0:155��� �0:0796 26:8096 0:189���

C-taker (HC + CC) �0:0099 9:9363 0:127��� �0:0140 12:8900 0:115���

H-maker/H-taker (HH) 0:1425 19:9614 0:177��� 0:0327 21:9211 0:209���

C-maker/H-taker (CH) �0:1012 8:8970 0:166��� �0:1123 10:7649 0:215���

H-maker/C-taker (HC) 0:0123 8:9232 0:152��� 0:0483 11:5856 0:150���

C-maker/C-taker (CC) �0:0222 2:7939 0:053��� �0:0623 3:9477 0:072���

JPY/USD
Returns �0:0007 1:6038 �0:010��� �0:0045 1:9110 0:007��

Total order �ow (HH + CH +HC + CC) 0:1061 20:0980 0:189��� �0:3439 23:6359 0:211���

H-taker (HH + CH) 0:0853 19:1127 0:190��� �0:2088 22:0344 0:204���

C-taker (HC + CC) 0:0209 8:3941 0:170��� �0:1351 11:5877 0:158���

H-maker/H-taker (HH) 0:1037 15:9972 0:209��� �0:1203 17:4612 0:226���

C-maker/H-taker (CH) �0:0184 6:9030 0:172��� �0:0885 9:1773 0:162���

H-maker/C-taker (HC) 0:0198 7:5686 0:198��� �0:0901 10:1673 0:191���

C-maker/C-taker (CC) 0:0011 2:4556 0:032��� �0:045 3:8751 0:026���

JPY/EUR
Returns 0:0024 1:5976 �0:053��� 0:0036 2:1398 �0:017���
Total order �ow (HH + CH +HC + CC) �0:0648 7:0941 0:152��� �0:1574 8:5978 0:147���

H-taker (HH + CH) �0:0497 5:7006 0:150��� �0:1216 6:2074 0:125���

C-taker (HC + CC) �0:0151 4:8409 0:146��� �0:0358 6:7000 0:131���

H-maker/H-taker (HH) �0:0172 4:4203 0:159��� �0:0600 4:3106 0:157���

C-maker/H-taker (CH) �0:0325 2:8912 0:129��� �0:0616 3:7197 0:092���

H-maker/C-taker (HC) �0:0095 4:5331 0:173��� �0:0264 6:0968 0:161���

C-maker/C-taker (CC) �0:0056 1:5558 0:023��� �0:0095 2:5621 �0:001
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Table 2: Summary statistics for the fractions of trade volume attributable to di¤erent trader combinations.
The table shows the fraction of the total volume of trade that is attributable to di¤erent combinations of
makers and takers. Results for the full 2006-2007 sample as well as for the three-month sub-sample, which
only uses data from September, October, and November of 2007, are shown. We show the average of the
daily fractions, calculated by summing up across all minutes within a day, and the standard deviations of
those daily fractions. For each currency, the �rst row shows the fraction of the total volume of trade where
a computer was involved on at least one side of the trade (i.e. as a maker or a taker). The second row shows
the fraction of the total volume where a human acted as a taker, the third row shows the fraction of the total
volume where a computer acted as a taker, and the following four rows shows the fractions broken down by
each maker-taker pair.

Full 2006-2007 Sample 3-month sub sample
Variable Mean Std. dev. Mean Std. dev.

USD/EUR
C-participation (V ol (CH +HC + CC)) 0:4163 0:1135 0:5386 0:0355

H-taker (V ol (CH +HH)) 0:7810 0:0791 0:6864 0:0331

C-taker (V ol (HC + CC)) 0:2190 0:0791 0:3136 0:0331

H-maker/H-taker (V ol (HH)) 0:5837 0:1135 0:4614 0:0355

C-maker/H-taker (V ol (CH)) 0:1973 0:0398 0:2251 0:0144

H-maker/C-taker (V ol (HC)) 0:1710 0:0514 0:2304 0:0205

C-maker/C-taker (V ol (CC)) 0:0480 0:0290 0:0831 0:0150

JPY/USD
C-participation (V ol (CH +HC + CC)) 0:4242 0:1065 0:5652 0:0364

H-taker (V ol (CH +HH)) 0:7585 0:0805 0:6461 0:0311

C-taker (V ol (HC + CC)) 0:2415 0:0805 0:3539 0:0311

H-maker/H-taker (V ol (HH)) 0:5758 0:1065 0:4348 0:0364

C-maker/H-taker (V ol (CH)) 0:1827 0:0304 0:2114 0:0126

H-maker/C-taker (V ol (HC)) 0:1860 0:0498 0:2486 0:0154

C-maker/C-taker (V ol (CC)) 0:0555 0:0321 0:1052 0:0193

JPY/EUR
C-involved (V ol (CH +HC + CC)) 0:6186 0:1154 0:7907 0:0410

H-taker (V ol (CH +HH)) 0:5557 0:1018 0:4037 0:0467

C-taker (V ol (HC + CC)) 0:4443 0:1018 0:5963 0:0467

H-maker/H-taker (V ol (HH)) 0:3814 0:1154 0:2093 0:0410

C-maker/H-taker (V ol (CH)) 0:1743 0:0360 0:1944 0:0164

H-maker/C-taker (V ol (HC)) 0:3337 0:0473 0:3734 0:0193

C-maker/C-taker (V ol (CC)) 0:1106 0:0673 0:2229 0:0464
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Table 3: Estimates of the ratio R = RC=RH. The table reports the mean estimates of the ratio R = RC=RH,
where RC = V ol(HC)=V ol(CC) and RH = V ol(HH)=V ol(CH). V ol(HH) is the daily trading volume
between human-makers and human-takers, V ol(HC) is the daily trading volume between human-makers and
computer-takers, V ol(CH) is the daily trading volume between computer-makers and human-takers, and
V ol(CC) is the daily trading volume between computer-makers and computer-takers. We report the mean
of the daily ratio R and the standard errors are shown in parantheses below the estimate. We also show the
number of days that had a ratio that was less than one. We report the results for the full 2006-2007 sample
and the three-month sub-sample, which only uses data from September, October, and November of 2007.
The ���, ��, and � represent a statistically signi�cant deviation from one at the 1, 5, and 10 percent level,
respectively.

Full 2006-2007 sample 3-month sub sample
USD/EUR

Mean of daily R = RC/RH 1:4463��� 1:3721���

Standard Error (0:0063) (0:0099)

No. of days with R < 1 0 0

No. of obs 498 62

JPY/USD
Mean of daily R = RC/RH 1:2619��� 1:1719���

Standard Error (0:0074) (0:0142)

No. of days with R < 1 15 4

No. of obs 498 62

JPY/EUR
Mean of daily R = RC/RH 1:6886��� 1:6242���

Standard Error (0:0154) (0:0250)

No. of days with R < 1 4 0

No. of obs 498 62
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Table 4: Regressions of realized volatility on the fraction of algorithmic trading. The table shows the results
from estimating the relationship between daily realized volatility and the fraction of algorithmic trading,
using daily data from 2006 and 2007. Robust standard errors are given in parentheses below the coe¢ cient
estimates. The left hand side of the table shows the results with a quarterly time trend included in the
regressions and the right hand side of the table shows the results with year-quarter time dummies (i.e., eight
time dummies, one for each quarter in the two years of data) included in the regressions. Panels A and
B show the results when the fraction of algorithmic trading is measured as the fraction of the total trade
volume that has a computer involved on at least one side of the trade (i.e. as a maker or a taker). Panels C
and D show the results when only the fraction of volume with computer taking is used. In addition to the
fraction of algorithmic trading and the control(s) for secular trends, 22 lags of volatility are also included
in every speci�cation. In all cases, only the coe¢ cient on the fraction of algorithmic trading is displayed.
Panels A and C show the results from a standard OLS estimation, along with the R2. Panels B and D show
the results from the IV speci�cation estimated with Limited Information Maximum Likelihood (LIML). In
Panels B and D, the Stock and Yogo (2005) F�test of weak instruments are also shown. The critical values
for Stock and Yogo�s (2005) F-test are designed such that they indicate a maximal actual size for a nominal
sized �ve percent test on the coe¢ cient in the LIML estimation. Thus, in order for the actual size of the
LIML test to be no greater than 10% (15%), the F-statistic should exceed 8:68 (5:33). There are a total of
498 daily observations in the data. The ���, ��, and � represent signi�cance at the 1, 5, and 10 percent level,
respectively.

With quarterly time trend With year-quarter time dummies
USD/EUR JPY/USD JPY/EUR USD/EUR JPY/USD JPY/EUR
Panel A. Fraction of volume with any computer participation, OLS estimation

Coe¤. on AT 0:0029 0:0018 0:0034��� 0:0078��� �0:0030 0:0065���

(0:0024) (0:0021) (0:0012) (0:0027) (0:0024) (0:0016)

R2 (%) 53:44% 61:13% 71:90% 56:73% 62:57% 73:33%

Panel B. Fraction of volume with any computer participation, IV estimation
Coe¤. on AT �0:0121� �0:0186�� �0:0022 �0:0078 �0:0101 �0:0128

(0:0062) (0:0089) (0:0039) (0:0061) (0:0069) (0:0175)

F-Stat 29:58 19:46 32:18 38:17 20:89 2:25

Panel C. Fraction of volume with computer-taking, OLS estimation
Coe¤. on AT 0:0037 �0:0027 0:0015 0:0094�� �0:0034 0:0032��

(0:0036) (0:0024) (0:0012) (0:0038) (0:0027) (0:0016)

R2 (%) 53:39% 61:17% 71:56% 56:43% 62:55% 72:66%

Panel D. Fraction of volume with computer-taking, IV estimation
Coe¤. on AT �0:0160�� �0:0215�� �0:0007 �0:0072 �0:0122 �0:0182

(0:0080) (0:0109) (0:0028) (0:0070) (0:0082) (0:0291)

F-Stat 39:99 17:63 64:81 55:45 21:20 1:04
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Table 5: We report the mean ratio of the exchange rate volatility (Panel A) and liquidity provision by
humans and by computers (Panel B) estimated during announcement days relative to that estimated during
non-announcement days. The one-hour measure is estimated using observations from 8:25 am to 9:24 am ET
and the one-minute measure is estimated using 8:30 am to 8:31 am ET observations. Announcement days are
de�ned as nonfarm payroll announcement days and non-announcement days are de�ned as 10 business days
before and after the nonfarm payroll announcement. In each panel, we report the chi-squared and p-value
of the Wald test that the ratio is equal to 1. In Panel C we report the chi-squared and p-value of the Wald
test that the liquidity provision of humans during announcement days relative to non-announcement days
is similar to the liquidity provision of computers. The statistics are estimated using data in the full sample
from 2006 to 2007 and there are 23 observations (April 6, 2007 nonfarm payroll announcement is missing
because it falls on Good Friday, when trading in the foreign exchange market is limited). Human liquidity
provision, LH, is de�ned as the sum of human-maker/human-taker volume plus human-maker/human-taker
volume divided by total volume. Computer liquidity provision, LC, is de�ned as the sum of computer-
maker/computer-taker volume plus computer-maker/human-taker volume divided by total volume. The ���,
��, and � represent signi�cance at the 1, 5, and 10 percent level, respectively.

USD/EUR JPY/USD JPY/EUR
Hour Minute Hour Minute Hour Minute

Panel A: Volatility
�a
�n

6:236��� 21:704��� 5:595��� 24:812��� 3:697��� 14:403��

�2 (H0 : �a = �n) 69:86 18:76 33:34 15:45 19:37 5:96

p-value 0:0000 0:0003 0:0000 0:0008 0:0002 0:0235

Panel B: Liquidity Provision
Liquidity provision by humans, LHa

LHn
0:964��� 1:062��� 1:023 1:183��� 0:888��� 0:980

Liquidity provision by computers, LCa
LCn

1:132��� 0:871��� 0:974 0:652��� 1:227��� 1:151

�2 (H0 : LHa = LHnorLCa = LCn) 16:56 9:04 2:71 31:91 25:19 0:5

p-value 0:0005 0:0067 0:1143 0 0:0001 0:487

Panel C: Comparison of Liquidity Provision between Humans and Computers
LHa
LHn

� LCa
LCn

�0:168��� 0:191�� 0:049 0:532��� �0:339��� �0:171
�2
�
H0 :

LHa
LHn

= LCa
LCn

�
19:24 5:91 1:50 36:07 25:21 0:66

p-value 0:0003 0:0241 0:2339 0:0000 0:0001 0:4245
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Table 6: Impulse responses from the VAR speci�cation with human-taker and computer-taker order �ow.
The table shows the impulse responses for returns as a result of shocks to the human-taker order �ow
(HH + CH) or computer-taker (CC +HC) order �ow, denoted H-taker and C-taker in the table headings,
respectively. The results are based on estimation of equation (2), using minute-by-minute data. In Panel A
we show the return response, in basis points, to a one-billion base-currency shock to one of the order �ows.
In Panel B we show the return response, in basis points, to a one standard deviation shock to one of the order
�ows. We show the results for the full 2006-2007 sample and for the three-month sub-sample, which only
uses data from September, October, and November of 2007. For each currency pair we show the short-run
(immediate) response of returns; the corresponding cumulative long-run response of returns, calculated as
the cumulative impact of the shock after 30 minutes; and the di¤erence between the cumulative long-run
response in returns minus the immediate response of returns, i.e., we provide the extent of over-reaction or
under-reaction to an order �ow shock. There are a total of 717; 120 minute-by-minute observations in the
full two-year sample and 89; 280 observations in the three-month sub-sample. We show in parenthesis the
standard errors of the di¤erence between the short-run and long-run response. These standard errors are
calculated by bootstrapping, using 200 repetitions.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker
Panel A: One billion base-currency shock

USD/EUR
Short run 28:06 26:94 23:20 25:22

Long run 27:87 32:35 24:16 31:38

Di¤erence �0:20 5:42 0:96 6:16

(0:29) (0:67) (0:72) (1:36)

JPY/USD
Short run 46:77 39:81 48:02 44:89

Long run 47:50 44:27 49:54 40:63

Di¤erence 0:74 4:46 1:52 �4:26
(0:48) (1:08) (1:36) (2:35)

JPY/EUR
Short run 99:32 102:71 124:02 115:52

Long run 108:07 109:85 132:53 123:26

Di¤erence 8:75 7:14 8:51 7:74

(1:50) (1:67) (4:79) (4:76)

Panel B: One standard deviation shock
USD/EUR

Short run 0:6617 0:2639 0:6045 0:3181

Long run 0:6570 0:3170 0:6296 0:3957

Di¤erence �0:0046 0:0531 0:0251 0:0777

(0:0068) (0:0065) (0:0189) (0:0172)

JPY/USD
Short run 0:8706 0:3269 1:0241 0:5098

Long run 0:8843 0:3635 1:0565 0:4614

Di¤erence 0:0137 0:0366 0:0324 �0:0483
(0:0090) (0:0089) (0:0289) (0:0267)

JPY/EUR
Short run 0:5572 0:4901 0:7587 0:7636

Long run 0:6063 0:5242 0:8108 0:8148

Di¤erence 0:0491 0:0341 0:0520 0:0512

(0:0085) (0:0080) (0:0294) (0:0314)
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Table 7: Variance decompositions from the VAR speci�cation with human-taker and computer-taker order
�ow. The table provides the long-run variance decomposition of returns, expressed in percent and calculated
at the 30 minute horizon, based on estimation of equation (2), using minute-by-minute data. That is, the
table shows the proportion of the long-run variation in returns that can be attributed to shocks to the human-
taker order �ow (HH + CH) and the computer-taker (CC +HC) order �ow, denoted H-taker and C-taker
in the table headings, respectively. For each currency pair we show the actual variance decomposition, and
the proportion of the explained variance in returns that can be attributed to each order �ow type. That
is, we re-scale the variance decompositions so that they add up to 100 percent. We show results for the
full 2006-2007 sample and for the three-month sub-sample, which only uses data from September, October,
and November of 2007. There are a total of 717; 120 minute-by-minute observations in the full two-year
sample and 89; 280 observations in the three-month sub-sample. We show in parenthesis the standard errors
calculated by bootstrapping, using 200 repetitions.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker

USD/EUR
Variance decomposition 29:27 4:74 25:92 7:25

(0:95) (0:19) (0:79) (0:42)

Proportion of explained share 86:06 13:94 78:14 21:86

(2:79) (0:56) (2:38) (1:27)

JPY/USD
Variance decomposition 29:31 4:22 28:59 7:22

(0:35) (0:11) (0:50) (0:33)

Proportion of explained share 87:41 12:59 79:84 20:16

(1:04) (0:33) (1:40) (0:92)

JPY/EUR
Variance decomposition 12:03 9:28 12:47 12:67

(0:21) (0:20) (0:38) (0:38)

Proportion of explained share 56:45 43:55 49:60 50:40

(0:99) (0:94) (1:51) (1:51)
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Table 8: Impulse responses from the VAR speci�cation with all four human/computer-maker/taker or-
der �ow combinations. The table shows the impulse responses for returns as a result of shocks to
the human-maker/human-taker order �ow (HH), computer-maker/human-taker order �ow (CH), human-
maker/computer-taker order �ow (HC), or computer-maker/computer-taker order �ow (CC), denoted in
obvious notation in the table headings. The results are based on estimation of equation (3), using minute-by-
minute data. In Panel A we show the return response, in basis points, to a one-billion base-currency shock to
one of the order �ows. In Panel B we show the return response, in basis points, to a one standard deviation
shock to one of the order �ows. We report the results for the full 2006-2007 sample and for the three-month
sub-sample, which only uses data from September, October, and November of 2007. For each currency pair
we show the short-run (immediate) response of returns; the corresponding cumulative long-run response of
returns, calculated as the cumulative impact of the shock after 30 minutes; and the di¤erence between the
cumulative long-run response in returns minus the immediate response of returns, i.e., we provide the extent
of over-reaction or under-reaction to an order �ow shock. There are a total of 717; 120 minute-by-minute
observations in the full two-year sample and 89; 280 observations in the three-month sub-sample. We show
in parenthesis the standard errors of the di¤erence between the short-run and the long-run response. These
standard errors are calculated by bootstrapping, using 200 repetitions.

Full 2006-2007 sample 3-month sub-sample
H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/
H-taker H-taker C-taker C-taker H-taker H-taker C-taker C-taker

Panel A: One billion base-currency shock
USD/EUR

Short run 27:64 29:66 26:57 32:19 20:58 30:94 28:94 21:74

Long run 30:13 20:47 29:89 24:92 24:18 23:35 34:64 5:94

Di¤erence 2:49 �9:19 3:32 �7:26 3:60 �7:59 5:70 �15:80
(0:35) (0:88) (0:83) (2:42) (0:97) (2:03) (1:79) (4:64)

JPY/USD
Short run 43:48 58:94 40:34 61:57 41:96 64:63 46:08 67:65

Long run 47:01 49:53 42:61 54:37 46:83 57:24 40:33 51:81

Di¤erence 3:53 �9:41 2:27 �7:20 4:87 �7:39 �5:75 �15:85
(0:59) (1:57) (1:30) (3:38) (1:62) (3:43) (2:89) (7:39)

JPY/EUR
Short run 102:61 92:16 100:91 102:04 139:33 103:92 114:01 94:47

Long run 116:12 91:24 107:18 93:41 159:46 96:85 118:47 95:20

Di¤erence 13:51 �0:92 6:27 �8:63 20:13 �7:07 4:46 0:74

(1:98) (3:18) (1:94) (4:98) (7:25) (9:35) (5:78) (10:70)

Panel B: One standard deviation shock
USD/EUR

Short run 0:5389 0:2575 0:2318 0:0893 0:4342 0:3211 0:3228 0:0845

Long run 0:5875 0:1777 0:2608 0:0692 0:5101 0:2424 0:3864 0:0231

Di¤erence 0:0486 �0:0798 0:0290 �0:0202 0:0760 �0:0788 0:0636 �0:0614
(0:0069) (0:0076) (0:0072) (0:0067) (0:0203) (0:0211) (0:0200) (0:0180)

JPY/USD
Short run 0:6721 0:3968 0:2962 0:1506 0:7019 0:5801 0:4544 0:2607

Long run 0:7267 0:3334 0:3129 0:1330 0:7834 0:5137 0:3976 0:1997

Di¤erence 0:0546 �0:0634 0:0167 �0:0176 0:0815 �0:0663 �0:0567 �0:0611
(0:0091) (0:0106) (0:0096) (0:0083) (0:0274) (0:0307) (0:0284) (0:0284)

JPY/EUR
Short run 0:4440 0:2629 0:4481 0:1583 0:5859 0:3829 0:6809 0:2409

Long run 0:5024 0:2603 0:4760 0:1449 0:6706 0:3568 0:7076 0:2428

Di¤erence 0:0584 �0:0026 0:0279 �0:0134 0:0847 �0:0260 0:0266 0:0019

(0:0086) (0:0091) (0:0086) (0:0077) (0:0306) (0:0344) (0:0345) (0:0273)
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Table 9: Variance decompositions from the VAR speci�cation with all four human/computer-maker/taker
order �ow combinations. The table provides the long-run variance decomposition of returns, expressed
in percent and calculated at the 30 minute horizon, based on estimation of equation (3), using minute-
by-minute data. That is, the table shows the proportion of the long-run variation in returns that can be
attributed to shocks to the human-maker/human-taker order �ow (HH), computer-maker/human-taker order
�ow (CH), human-maker/computer-taker order �ow (HC), and computer-maker/computer-taker order �ow
(CC), denoted in obvious notation in the table headings. We show the actual variance decomposition, and
the proportions of the explained variance in returns that can be attributed to each order �ow type. That is,
we re-scale the variance decompositions so that they add up to 100 percent. We present results for the full
2006-2007 sample and for the three-month sub-sample, which only uses data from September, October, and
November of 2007. There are a total of 717; 120 minute-by-minute observations in the full two-year sample
and 89; 280 observations in the three-month sub-sample. We show in parenthesis the standard errors, which
are calculated by bootstrapping, using 200 repetitions.

Full 2006-2007 sample 3-month sub-sample
H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/
H-taker H-taker C-taker C-taker H-taker H-taker C-taker C-taker

USD/EUR
Variance decomp. 20:71 4:73 3:89 0:58 14:19 7:68 7:86 0:59

(0:89) (0:24) (0:21) (0:04) (0:75) (0:48) (0:43) (0:09)

Proportion 69:24 15:81 13:01 1:94 46:80 25:33 25:92 1:95

(2:98) (0:80) (0:70) (0:13) (2:47) (1:58) (1:42) (0:30)

JPY/USD
Variance decomp. 18:62 6:48 3:70 0:93 14:47 9:78 6:12 2:00

(0:33) (0:15) (0:11) (0:04) (0:46) (0:41) (0:31) (0:13)

Proportion 62:63 21:80 12:45 3:13 44:70 30:21 18:91 6:18

(1:11) (0:50) (0:37) (0:13) (1:42) (1:27) (0:96) (0:40)

JPY/EUR
Variance decomp. 7:84 2:74 7:94 0:99 7:72 3:32 10:47 1:30

(0:16) (0:12) (0:19) (0:06) (0:29) (0:20) (0:42) (0:11)

Proportion 40:18 14:04 40:70 5:07 33:84 14:56 45:90 5:70

(0:82) (0:61) (0:97) (0:31) (1:27) (0:88) (1:84) (0:48)
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Figure 1: 50-day moving averages of participation rates of algorithmic traders 
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Figure 2: 50-day moving averages of participation rates broken down into four 
maker-taker pairs 
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Figure 3: Dollar-Yen Market on August 16, 2007 
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Figure 4: Volatility and Algorithmic Market Participation 

*Daily realized volatility is based on 1-minute returns. We show monthly observations 
**Share of algorithmic trading is at a monthly frequency 
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Figure 5: Deciles of Realized Volatility and AT Participation 
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∗The research of J. Cvitanić was supported in part by NSF grant DMS 06-31298. We thank Doug Adams
for useful comments on the paper. The views presented here are our own and do not represent the views of
the Commodity Futures Trading Commission, its Commissioners or staff. All errors are our own.
†Caltech, Humanities and Social Sciences, M/C 228-77, 1200 E. California Blvd. Pasadena, CA 91125.

Ph: (626) 395-1784. E-mail: cvitanic@hss.caltech.edu.
‡Commodity Futures Trading Commission, 1155 21st Street, NW, Washington, DC 20581. Ph: (202)

418-5587. E-mail: akirilenko@cftc.gov.

1



1 Introduction

High frequency trading typically refers to trading activity that employs extremely fast au-
tomated programs for generating, routing, canceling, and executing orders in electronic
markets. High frequency traders submit and cancel a massive number of orders and execute
a large number of trades, trade in and out of positions very quickly, and finish each trading
day without a significant open position. High frequency trading is estimated to account for
at least half of the trading volume on equity and derivatives exchanges.

High frequency traders are very fast, but what valuable service do they provide to the
markets? Do they make prices more informative? Do they increase market liquidity? How
do they make money?

In this paper we study the distribution of transaction prices generated in an electronic
limit order market populated by orders from high frequency traders (machines) and low
frequency traders (humans). We focus on the period between two human transactions - a
very short period of time in a liquid market. We posit that during such a short horizon,
the impact of changes in the fundamentals is negligible. Therefore, we model the incoming
human buy order prices and sell order prices during the period as two iid sequences, arriving
according to exogenous Poisson processes. For tractability, we assume that the submitted
orders are of unit size and at infinitely divisible prices.1 We justify this simplification as
being appropriate for inter-trade intervals of relative homogeneity, in which the demand of
all the traders on the buy side is approximately the same, and also close to the quantity
that the individual traders on the sell side are willing to supply in a single trade.

Machines are assumed to be strategic uninformed liquidity providers. They have only
one advantage over the humans - the speed with which they can submit or cancel their
orders. Because of this advantage, machines dominate the trading within each period by
undercutting slow humans at the front of the book. This is only one of the strategies used
by actual high-frequency traders in real markets, and the only one we focus on.2 In the
language of the industry, machines aim to “pick-off” or “snipe out” incoming human orders.
However, we assume that machines do not carry their submitted orders across time, for the
fear of being picked off themselves. Thus, we assume that machines submit deterministic
orders that get immediately canceled if not executed, and then get resubmitted again. With
these actions, they shape the front of the limit order book.

When we model the optimization of the machine during the intra-trade period, we assume
that it knows the process that governs the arrivals of human orders, the distribution of
incoming human limit orders, and the values of existing orders in the book. In reality, the
machine needs to estimate these quantities by “pinging the book” - sending quick trial orders
and canceling them immediately. We do not model the estimation procedure, but assume it
has been done before the beginning of the interval.

Our findings are as follows. First, we derive formulas for the distributions of transaction

1In the actual limit order book environment, traders submit orders of different quantities at discrete price
intervals - ticks. At each tick, quantities get stacked up in accordance with a priority rule, e.g., time priority
or order size and then time priority. Our idealized model, with the order prices coming from a continuous
distribution and for one order only, can be thought of as taking the actual orders for multiple units stacked
up at each tick and “spreading” them between ticks.

2Other known high frequency trading strategies include (i) the collection of rebates offered by exchanges
for liquidity provision, (ii) cross-market arbitrage, and (iii) “spoofing” - triggering other traders to act.
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prices and transaction times for a given intra-trade period both with and without the ma-
chines. We find that the presence of a machine is likely to change the average transaction
price, even in the absence of new information. We also find that in the presence of a machine,
the shape of the transaction price density remains the same in the middle, between the bid
and the ask of the machine, the far tails of the density get thinner, while the parts of the
tails closer to the bid and the ask of the machine get fatter. In the presence of the machine,
mean intertrade duration decreases in proportion to the increase in the ratio of the human
order arrival rates with and without the presence of the machine. Trading volume goes up
by the same rate. In other words, if the humans submit orders ten times faster when the
machine is present, intertrade duration falls and trading volume increases by a factor of ten.

Second, we compute the optimal bid and ask prices for the machine that optimizes
expected profits subject to an inventory constraint. The inventory constraint prevents the
machine from carrying a significant open position to the next intra-human-trade period.
The optimal bid and the ask for the machine are close to being symmetric around the mean
value of the human orders, with the distance from the middle value being determined by
the inventory constraint–the less concerned the machine is about the size of the remaining
inventory, the closer its bid and the ask prices are to each other. The expected profit of an
optimizing machine is increasing in both the variance and the arrival frequency of human
orders.

Our two findings are interrelated; one the one hand, an optimizing machine is able to
make positive expected profits by “sniping” out human orders somewhat away from the
front of the book. On the other hand, execution of the “sniping” order submission strategy
results in a transaction price density with bulges near the front and thinner outer tails. In
fact, in a special case, the faster humans submit and vary their orders, the more profits the
machine makes.

Our model has a number of limitations. First, it is not an equilibrium model of a limit
order market like those of Parlour (1998), Foucault (1999), Biais, Martimor and Rochet
(2000), Parlour and Seppi (2003), Foucault, Kadan and Kandel (2005), Goettler, Parlour,
and Rajan (2005), Back and Baruch (2007), and Biais and Weill (2009), among others.
These papers aim to derive the equilibrium price formation process. In order to cope with
the large dimensionality of the state and action spaces of limit order markets, these studies
use stylized models with many simplifying assumptions. In contrast to the equilibrium
considerations, we study the formation of transaction prices given the distribution of orders,
which we take to be exogenous over very short periods of time.

Second, our model is not a dynamic expected utility maximization model like those of
Avellaneda and Stoikov (2008), Kuhn and Stroh (2009), and Rosu (2009). Those studies
assume specific functional forms that govern the traders’ preferences. We take the approach
of modeling the order submission process over a very short period of time without specifying
the traders’ preferences or their optimization problems. Our model is essentially a stationary
sequence of one-period models, and all that matters is what happens during the interval
between two trades.

While these limitations make our results less satisfactory from the equilibrium analysis
point of view, our approach is more pragmatic. Our results work for any possible (continu-
ous) distribution of orders - equilibrium or otherwise. Thus, if a model comes up with the
description of an equilibrium order submission process, we can plug it into our analysis and

3



get the distributions of transaction prices and transaction times. Moreover, our results can
be easily applied to the transaction-level data. We make no assumptions about the (un-
observable) objectives of traders; we only make assumptions about their order submission
processes.

Finally, to our knowledge, this is the first model to formally investigate the impact of
high frequency trading on transaction prices, trading volume, and intertrade duration, as
well as to characterize the profits of a high frequency trader in terms of the properties of
low frequency traders.3

Our paper proceeds as follows. Section 2 studies the benchmark model without machines.
Section 3 compares the benchmark model to the model in which an infinitely fast machine
is present, and solves the optimization problem of the machine. Section 4 presents some
empirical implcations of our results. Section 5 concludes.

2 Benchmark Model: Identical (Slow) Traders

2.1 A Single Intra-Trade Period

The model setup is as follows. There are infinitely many (slow) traders who submit limit
orders into an electronic limit order book with the intent to buy or sell a single asset.

We make the following simplifying assumption:

Assumption 2.1 Each order is for one unit of the traded asset only.

We focus on a single intra-trade period, during which new buy and sell orders arrive into
the limit order book, where t = 0 represents the beginning of the period.

Buy order prices are assumed to be represented by a sequence of random variables Btn ,
where tn are Poisson arrival times of the buy orders, with intensity γB. Similarly, Ssm
represent sell order prices, and they arrive with intensity γS. We denote by µB, µS the
maximum buy order price and the minimum sell order price, respectively, among those that
are already resting in the book at the beginning of the interval, i.e, at t = 0.

The orders go out of the book either if they are executed or if they are canceled.4 We
denote by MB

t the maximum of existing buy order prices and by mS
t the minimum of existing

sell order prices at time t ≥ 0. Orders at time t > 0 consist of the resting orders as of t = 0
and the newly arrived orders.

We define the execution time of the next trade as

τ := inf{t : MB
t ≥ mS

t }

At execution time τ , the transaction price Pτ is set at the maximum buy price MB
τ if the

trade was triggered by the sell order that came in at time τ ; otherwise, the transaction price
is set at the minimum sell price mS

τ .
We introduce the following assumption, which presents a simple framework for studying

the randomness of the buy and sell orders:

3Cont, Stoikov, and Talreja (2008) present a stochastic stochastic model for the continuous-time dynamics
of a limit order book, but do not explicitly model high and low frequency traders.

4We will essentially assume away cancelations in what follows.
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Assumption 2.2 (i) Incoming buy orders Btn are iid with distribution FB, conditionally
on the information available by time t = 0. Similarly, incoming sell orders, Stn, are iid with
distribution FS. (ii) FB and FS have densities, and the densities are strictly positive for all
x for which 0 < Fi(x) < 1, i = B, S. (iii) Sell orders are independent from the buy orders.
(iv) Within the intra-trade interval, the maximum buy order, MB, and the minimum sell
order, mS, do not get canceled.

We begin by computing the the distributions of bid and ask prices, and the distribution
of the intra-trade time. We have the following result.

Proposition 2.1 Under our standing assumptions, we have the following:
(i) The distribution of the minimum sell order price among those that arrived by time t

is given by
FmSt (x) = 1− 1{x<µS}e

−tγSFS(x)

(ii) The distribution of the maximum buy order price among those that arrived by time
t is given by

FMB
t

(x) = 1{x≥µB}e
−tγB(1−FB(x))

(iii) Distribution of the time of trade is given by

P (τ > t) = P (MB
t < µS)P (mS

t = µS) +

∫ µS

µB

P (MB
t ≤ x)dFmSt (x)

= e−tγB(1−FB(µS))e−tγSFS(µS) +

∫ µS

µB

e−tγB(1−FB(x))tγSe
−tγSFS(x)dFS(x)

In particular, if the distributions of buy and sell order prices are the same, FB = FS = F ,
and γB is different from γS, then the distribution of the time of trade is given by

P (τ > t) = e−t(γB [1−F (µS)]+γSF (µS)) +
γS

γB − γS
e−tγB

[
et(γB−γS)F (µS) − et(γB−γS)F (µB)

]
If, moreover, the new orders take values only inside the initial bid-ask spread, that is,
F (µB) = 0, F (µS) = 1, then the distribution is that of the sum of two independent ex-
ponentials:

P (τ > t) =
γB

γB − γS
e−tγS − γS

γB − γS
e−tγB

If FB = FS = F and γB = γS = γ, we get

P (τ > t) = e−tγ(1 + tγ[F (µS)− F (µB)])

with the mean

E[τ ] =
1

γ
[1 + F (µS)− F (µB)]

This proposition gives us the full description of the distributions of bid and ask prices,
as well as that of the intra-trade time, as a functional of the distributions of buy and sell
orders and their frequency. Thus, it also gives us information about the volume in a given
interval of time. Interestingly, we see that in the symmetric case FB = FS = F the time
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of trade distribution depends on F only through its values F (µB) and F (µS) evaluated at
the initial bid and ask. Moreover, if also the new orders take values only inside the initial
bid-ask spread, the expected time to trade is the sum of the expected buy and sell arrival
times. Otherwise, the latter sum is the upper bound for the expected time to trade.

To illustrate this and subsequent results, we denote the range of buy order prices in the
limit order book by [A,B], and the range of sell order prices by [C,D] where B and D can
be infinite. In order to exclude uninteresting cases, we assume that

A ≤ C ≤ B ≤ D ,µB ∈ [A,B] , µS ∈ [C,D]

Corollary 2.1 Assume that FB is uniform on [A,B] and FS is uniform on [C,D], that
γB(D − C) 6= γS(B − A), and that the initial bid and ask can be ignored, that is, µB ≤ C,
µS ≥ B. Then,

P (τ > t) = e−tγS
B−C
D−C +

γS
(D − C)[ γB

B−A −
γS
D−C ]

[
e−tγS

B−C
D−C − e−tγB

B−C
B−A

]
with the mean

E[τ ] =
γB(D − C) + γS(B − A)

γSγB(B − C)

The above corollary presents the expression for the expected time to trade in a special
case when the distributions of buy and sell orders are assumed to be uniform. From the
corrolary, the expected time to trade, E[τ ], is large when B is close to C, so there is a small
overlap between the possible values of buy and sell orders. Moreover, the expected time
to trade is large if either the frequency for the arrival of buy orders or the frequency for
the arrival of sell orders (or both) is low. In contrast, the expected time to trade can get
shorter if the small overlap between the possible values for buy and sell orders can be made
up for by an increase in the buy or sell frequency or if low order arrival frequency can be
compensated by an increase in the buy-sell order overlap.

Next, we compute the distribution of transaction prices at a given time of trade, τ . We
first introduce the probability that, conditional on an order arriving, it was a buy order:

p :=
γB

γB + γS

Denote by A(τ) the event that the order that just came in and triggered the transaction
was a sell order, and by Ac(τ) the event that the transaction was triggered by an incoming
buy order. The transaction price is defined as

Pτ := MB
τ 1A(τ) +mS

τ 1Ac(τ)

Proposition 2.2 Under our standing assumptions, we have the following:
(i) The distribution of the maximum buy order price at the time of trade is given by, for

x ∈ [µB, B],
P (MB

τ ≤ x) = p(1− p)×[∫ x∧µS

µB

FB(x)− FB(y)

[(1− p)FS(y) + p(1− FB(y))]2
dFS(y) +

∫ x∧µS

µB

FS(y)

[(1− p)FS(y) + p(1− FB(y))]2
dFB(y)

]
6



+[FB(x)− FB(µS)]
p

p+ (1− p)FS(µS)− pFB(µS)]

+FS(µB)
1− p

p+ (1− p)FS(µB)− pFB(µB)

(ii) The distribution of the minimum sell price at the time of trade is given by, for x ≥ C,

P (mS
τ ≤ x) = p(1− p)×[∫ x∧µS

µB

1− FB(y)

[(1− p)FS(y) + p(1− FB(y))]2
dFS(y) +

∫ x∧µS

µB

FS(y ∧ x)

[(1− p)FS(y) + p(1− FB(y))]2
dFB(y)

]
+1{x>µS}[1− FB(µS)]

p

p+ (1− p)FS(µS)− pFB(µS)

+1{x>µB}FS(µB ∧ x)
1− p

p+ (1− p)FS(µB)− pFB(µB)

(iii) The distribution of the transaction price is given by, for x ∈ [µB ∨ C,D],

P (Pτ ≤ x) = p(1− p)×
∫ x∧µS

µB

FS(y)

[(1− p)FS(y) + p(1− FB(y))]2
dFB(y)

+FS(µB)
1− p

p+ (1− p)FS(µB)− pFB(µB)

+p(1− p)×
∫ x∧µS

µB

1− FB(y)

[(1− p)FS(y) + p(1− FB(y))]2
dFS(y)

+1{x>µS}[1− FB(µS)]
p

p+ (1− p)FS(µS)− pFB(µS)

If FB = FS = F and p 6= 1/2, this becomes

P (Pτ ≤ x) = 1{x>µB}
p(1− p)
1− 2p

[
1

p+ (1− 2p)F (µB)
− 1

p+ F (x ∧ µS)(1− 2p)

]

+F (µB)
1− p

p+ (1− 2p)F (µB)

+1{x>µS}[1− F (µS)]
p

p+ (1− 2p)F (µS)

If, in addition to FB = FS = F , we have p = 1/2, then we get

P (Pτ ≤ x) = 1{x>µB}F (x ∧ µS) + 1{x>µS}[1− F (µS)]

that is, FP = F in the interval (µB, µS).
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The four terms in the price distribution given in (iii) are due to the following: the first two
terms correspond to an incoming sell order being the new minimum and triggering the sale,
where the second, non-integral term corresponds to the states of the world in which none
of the buy orders that have arrived since the last trade is higher than the initial maximum
buy order µB (so that the transaction price equals µB); the last two terms correspond to an
incoming buy order being the new maximum and triggering the sale, where the very last,
non-integral term corresponds to the states of the world in which none of the sell orders that
have arrived since the last trade is lower than the initial minimum sell order µS (so that the
transaction price equals µS).

In the case FS = FB = F , denoting by f the density of F , the density of the transaction
price in the interval (µB, µS) is given by

fPτ (x) =
p(1− p)

[p+ F (x)(1− 2p)]2
f(x)

The factor multiplying f(x) is increasing in F (x) for p > 0.5. That is, if the buy orders are
more likely, then the density f of order prices is distorted in favor of high transaction prices.
The opposite is true if the sell orders are more likely.

Similarly, for a fixed and small value of F (x), the factor multiplying f(x) is decreasing
in p – increasing p means less sell orders and more buy orders, so that the probability of the
transaction price being small becomes lower. The opposte is true for a fixed and high value
of F (x).

Corollary 2.2 Assume now that FB is uniform on [A,B] and FS is uniform on [C,D], that
γB(D − C) 6= γS(B − A), and that the initial bid and ask can be ignored, that is, µB ≤ C,
µS ≥ B. Then, we have, for x ∈ [C,B],

P (Pτ ≤ x) =
p(1− p)(B − C)

p(D − C)− (1− p)(B − A)

×

[
1

p B
B−A + (p− 1) C

D−C + x
(

1−p
D−C −

p
B−A

) − B − A
p(B − C)

]
with the density

fP (x) = p(1− p) (B − C)(B − A)(D − C)

{pB(D − C) + (p− 1)C[B − A] + x[(1− p)(B − A)− p(D − C)]}2

If, in addition, D − C = B − A, the expected value of the price is, in terms of the liquidity
variable z = p

1−p = γB
γS

,

E[Pτ ] =
zB − C
z − 1

− z

(z − 1)2
(B − C) log(z)

and the variance is

V ar[Pτ ] =
z(B − C)2

(z − 1)2

[
1− z

(z − 1)2
(log z)2

]
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We see that with a loss of liquidity on the buy side (as z → 0), the expected price tends
to its lowest possible value C, and with the loss of liquidity on the sell side the expected
price tends to its highest possible value B. In either case, the variance tends to zero. It
can also be verified that the expected price is an increasing concave function of z, while the
variance is a concave function of z with a maximum at z = 1.5

Remark 2.1 A digression on equilibrium order submission processes. We must
caution the reader that although results obtained under the assumptions of symmetric dis-
tributions of buy and sell orders, FB = FS = F , are elegant and tractable, such symmetric
order distributions may not arise in a full information equilibrium. In fact, we show in
the appendix that, if the buyers are all identical, if they believe that the sellers follow the
same distribution FS = FB for their orders, and if they are risk-neutral, then the necessary
condition for the buyers leads to the distribution of the form

FB(x) = cB(vB − x)−2/3

where cB is a constant, and vB is the value the buyers assign to holding one unit of the asset.
6 However, under the analogous assumptions on the sellers, the necessary condition for the
sellers leads to the distribution of the form

FS(x) = 1− cS(x− vS)−2/3

Thus, the assumption of the form FB = FS = F is actually not tenable in such a full
information equilibrium.

2.2 Multiple Periods

In order to extend our model to a multi-period setting, we need to specify how the orders
change from one intra-trade period to another. We consider the case which will keep the
setup as stationary as possible. We assume that, conditional on the last transaction price,
P (k), buy order Bi(k + 1) in the next intra-trade period is given by

Bi(k + 1) = P (k)×Bi

where Bi are iid with distribution FB. In other words, the orders are equal to the previous
price randomly distorted by a multiplicative random factor (which means the log-order is
the previous log-price plus a random term). Set, without loss of generality, P (0) = 1 and
denote P (1) = P . The (conditional) distribution of the buy orders in the (k + 1)-st period
is

FB,k+1(x) = FB(x/P (k))

and similarly for sell orders. Assume now that the book is emptied after the previous trade.
It is then easily verified from Proposition 2.2 (iii) that in this model

FP (k+1)|P (k)(x) = FP (x/P (k)) (2.1)

5The variable z is one measure of liquidity - the difference between the arrival frequencies of buy and
sell orders. More broadly, liquidity reflects the ease with which an asset can be bought or sold without a
significant effect on its price. Thus, liquidity has a number of other dimensions that are not being captured
by z.

6For this to be a distribution function, x should take values less than a constant v < vB .
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where FP (k+1)|P (k) is the conditional distribution. In other words, we can write

P (k + 1) = P × P (k)

This means that the log-price is a random walk: it is obtained as a sum of iid random
variables each with the distribution of P = P (1). Thus, the distribution of the relative
return is

P (
P (k + 1)

P (k)
− 1) ≤ x) = FP (x+ 1)

So, under the assumptions of this section, in order to study the qualitative properties of
the returns distribution, it suffices to study the price distribution.

Moreover, we also see that, denoting by τk the times of trade,

Fτk+1|P (k)(t) = Fτk(t)

and thus the intra-trade distribution is stationary.

3 A Model With A Machine Trader

The setup of the model is the same as in the benchmark model with the addition of one
infinitely fast (from the point of view of other traders) high frequency trader. The high
frequency trader–the machine–is assumed to keep issuing the same buy order b and sell
order s, b < s, until a trade occurs. The orders b and s get immediately canceled if not
executed right away. This mimics the so-called “sniping” strategy – a strategy designed to
discover liquidity in the limit order book, or to “pick-off” orders already in the book.

We assume that the machine is so fast that it will always pick off a human sell order, Si,
before any other human trader whenever b ≥ Si, (machine buys for Si), unless Si is less than
the existing maximum buy order µB in the book, in which case the transaction is executed
at price µB. The assumption for the human buy orders, Bi, is similar.

Our objective is to compare a market with a machine to the one without it. Our com-
parison is non-strategic: in both setups, we maintain the same assumptions about the dis-
tributions and the arrival frequencies of the buy and sell orders. In a strategic setting, it is
quite possible that the presence of a machine would affect order human submission processes
and frequencies. However, we show that as in the benchmark case, the distribution of the
transaction prices depends on the arrival rates only through the ratio p = γB/(γB + γS).
Thus, if the arrival rates change by the same factor because of the machine presence, p will
not change, and there will be no effect on the price distribution. (On the other hand, there
might be effects from the changes in the orders distributions.)

We now proceed to examine the distributions of execution times and transaction prices.

Proposition 3.1 Assume µB < b < s < µS. The distribution of the time until next trade
is given by

P (τ > t) = P (MB
t < s)P (mS

t ≥ s) +

∫ s

b

P (MB
t ≤ x)dFmSt (x)
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= e−tγSFS(s)e−tγB(1−FB(s)) +

∫ s

b

tγSe
−tγSFS(x)e−tγB(1−FB(x))dFS(x)

In particular, if FB = FS = F and γB = γS = γ, we get

P (τ > t) = e−tγ[1 + tγ(F (s)− F (b))]

with the mean equal to

E[τ ] =
1

γ
[1 + F (s)− F (b)]

As we can see from the last expression, when µB < b < s < µS, FB = FS = F and γB =
γS = γ, denoting by γ0 the arrival rates in the benchmark case with no machine, the ratio of
the mean time between transactions with and without the machine is γ

γ0

1+F (s)−F (b)
1+F (µS)−F (µB)

, which

is less than γ
γ0

, but not less than half thereof. If the order arrival rates with the machine and
without the machine are the same, i.e., γ = γ0, then the presence of the machine speeds up
the trades, but not more than by a factor of two, on average. By construction, the volume
goes up, but not more than double.

If, however, the ratio γ
γ0

, is large, then the presence of the machine will speed up the

trades (lower inter-trade duration) in proportion to this ratio. The volume will also increase
by the same proportion.

We now present the result for the uniform distribution.

Corollary 3.1 Assume µB < C < b < s < B < µS, that FB is uniform on [A,B] and FS
is uniform on [C,D], and that γB(D − C) 6= γS(B − A). Then, we have

P (τ > t) = e−t[γB
B−s
B−A+γS

s−C
D−C ] +

γS
D − C

e−t[
γBB

B−A−
γSC

D−C ]

γB
B−A −

γS
D−C

[
ets[

γB
B−A−

γS
D−C ] − etb[

γB
B−A−

γS
D−C ]

]
with the mean

E[τ ] =
(B − A)(D − C)

γB(D − C)− γS(B − A)

×
[

γB(D − C)

γB(D − C)(B − s) + γS(B − A)(s− C)
− γS(B − A)

γB(D − C)(B − b) + γS(B − A)(b− C)

]
In Figure 1 we plot the density of the intra-trade time with and without the machine

for the uniform distribution of orders. In the presence of the machine, this density is more
concentrated on low values.
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Figure 1:  Density of intratrade time with and without the high-frequency trader.

Figure 2 shows the mean intra-trade times with and without the machine, as the supports
of the buy and sell orders distributions have decreasing overlap. Average intertrade duration
increases with less overlap, but the increase is steeper without machine.

 Mean time-to-trade
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Figure 2:  Mean intratrade time as the sell-buy gap increases.

The following is the main technical result of this section, while its economics consequences
are given in the corollary below.

Proposition 3.2 Assume µB < b < s < µS. The distribution of the transaction price Pτ is
given by:

P (Pτ ≤ x) = p(1− p)×[ ∫ x∧s

µB

FS(y)

[(1− p)FS(y ∨ b) + p(1− FB(y))]2
dFB(y)+

∫ x∧µS

b

1− FB(y)

[(1− p)FS(y) + p(1− FB(y ∧ s))]2
dFS(y)

]
+1{x>µB}FS(µB)

1− p
p+ (1− p)FS(b)− pFB(µB)
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+1{x>µS}[1− FB(µS)]
p

p+ (1− p)FS(µS)− pFB(s)

+p× 1{x>s}

∫ x∧µS

s

1

(1− p)FS(y) + p(1− FB(s))
dFB(y)

+(1− p)×
∫ x∧b

µB

1

(1− p)FS(b) + p(1− FB(y))
dFS(y)

In particular, in case FB = FS = F , the price density on the interval (µB, µS) is given by

dFP (x) = dF (x)

[
1{µB<x<b}

(1− p)[p+ (1− p)F (b)]

[(1− p)F (b) + p(1− F (x))]2
+ 1{b≤x<s}

p(1− p)
[(1− 2p)F (x) + p]2

+1{s≤x<µS}
p[1− p+ p(1− F (s))]

[(1− p)F (x) + p(1− F (s))]2

]
and, when in addition p = 1/2, on the interval (µB, µS) we have

dFP (x) = dF (x)

[
1{µB<x<b}

1 + F (b)

[F (b) + 1− F (x)]2
+ 1{b≤x<s} + 1{s≤x≤µS}

2− F (s)

[F (x) + 1− F (s)]2

]
The following is the main economic result of this section, and it is obtained by direct

examination of the price distribution given in the previous proposition, and the analogous
result for the benchmark case of no machine. Here, we assume that the order distributions
FB, FS and the probability of a buy order p are the same in the markets without and with
the machine.

Corollary 3.2 (i) Inside the interval [b, s] the density of the transacted price remains the
same as in the benchmark case. The far tails are more narrow, that is, the probabilities of
the price being equal to µB and µS are lower, and, if µB is low enough, the density is lower
for x greater than but close to µB, and analogously for x close to µS. The values of the
density are higher at values less than but close to b and at values larger than but close to s.

(ii) For a fixed price value µB < x < b1 < b2, its density fP (x) is higher if the machine
uses lower bid b1 than if it uses higher bid b2, and analogously for s1 < s2 < x < µS, the
density is higher if the machine uses the higher ask s2.

(iii) Assume now FB = FS = F where F is symmetric, and p = 1/2. If b and s are
chosen symmetrically so that F (b) = 1 − F (s), and the same is true for µB and µS, then
the mean value of the transacted price is the same as the mean value of the incoming human
orders, hence the same as the mean of the transacted price when there is no machine.

The intuition behind (i) is the following. The density remains the same on the interval
(b, s) because the transaction price will take a value in that interval if and only if the
transaction was between two human traders. Outside of this interval, but close to it, the
density is higher relative to the benchmark case, as now the orders outside the interval [b, s]
get picked off by the machine. To compensate, the density has to go down in the far tails.

From (i) we see that the effect on the variance is complex – the thinning of the far tails
would reduce the variance, but the fattening of the nearer parts of the tails has the opposite
effect. Whether the variance goes up or down will depend on the actual values of b, s, µB,
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µS, and on the distributions FB, FS. However, the higher even moments are likely to go
down, because of the thinning of the far tails. Furthermore, it can be verified that, if the
ratio fS(x)/fB(x) of the sell vs. buy order densities is bounded from above and away from
zero, then also bounded is the ratio of the density of the transaction price with machine
vs. that density without machine. Also, what we have just discussed is the variance of a
single transaction price. Let us recall that the time between transactions goes down in the
presence of the machine (at most by a factor of two). Thus, even if the variance of the single
transaction price goes up, the variance of the average transaction price per unit time may
go down.

The first part of item (ii) holds because there is higher density for values between b1 and
b2 if the machine uses b2, as it picks off those values, too. Thus, to compensate for this,
the density has to go down for values of x below b1 (the machine picks off fewer of those).
Similarly on the ask side.

Item (iii) gives conditions under which the mean price does not change. Perhaps more
interestingly, if these conditions are not satisfied, the mean price is likely to change, in
general. Thus, the presence of the sniping machine is likely to change the average transaction
price, even in the absence of new information, if the distributions of the sell orders and buy
orders are not symmetric, or if the machine’s bid and ask are not symmetric with respect
to the orders distribution.

In the case of the uniform distribution we get

Corollary 3.3 Assume µB < C < b < s < B < µS, that FB is uniform on [A,B] and FS
is uniform on [C,D], and that γB(D − C) 6= γS(B − A). Then, the density of the price for
x ∈ [C,B] is given by

fP (x) = 1{x<b}
p(1− p)(B − C)(B − A)(D − C) + (1− p)2(B − A)2(b− C)

[(1− p)(b− C)(B − A) + p(B − x)(D − C)]2

+1{b<x<s}
p(1− p)(B − C)(B − A)(D − C)

[(1− p)(x− C)(B − A) + p(B − x)(D − C)]2

+1{x>s}
p(1− p)(B − C)(B − A)(D − C) + p2(D − C)2(B − s)

[(1− p)(x− C)(B − A) + p(B − s)(D − C)]2

Figure 3 illustrates the conclusions of Corollary 3.2, showing the thinning of the far
tails of the density, the fattening for the values moderately away from the middle of the
distribution, and no change in the middle.
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Figure 3:  Price density when orders are uniform. 

Figures 4 and 5 show the means and the variances of the price with and without machine
presence, as the supports of the uniform distributions of orders have less and less overlap.7
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Figure 4: Mean price as the sell-buy gap increases.

7We decrease the overlap by moving to the right the support interval for the sell orders and keeping the
same the distribution of the buy orders.
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Figure 5: Price variance as the sell-buy gap increases.

The average values are almost identical in the two cases, while the variance with machine
is somewhat lower than without it, but the difference vanishes as the supports of the buy
and sell orders diverge.

3.1 Machine Optimization

Up to now, we assumed that the machine submits very fast buy and sell orders and can-
cels them if they are not executed. Under this assumption, machine does not learn from
transaction prices or the execution of orders.

Let us now assume that the machine will be issuing the same orders b and s until a
random time τ , which is less or equal to the first time a human order “steals” from the
machine a human sell order Si < b or a human buy order Bi > s. The machine interprets
the time τ as the first time some new information arrives in the market. For simplicity, we
assume that over very short intervals of time that we focus on, the machine models τ as a
random time independent of everything else, having exponential distribution with intensity
λ.8 Also for simplicity, we set µB = 0, µS =∞, that is, the book is initially empty.

Denote by Nb (Ns) the number of buys (sells) of the machine during the random period
[0, τ ]. Also denote

pS = P (b ≥ Si), pB = P (s ≤ Bi)

rS = E[Si1b≥Si ] , rB = E[Bi1s≤Bi ]

Note that Nb, Ns are conditionally binomial with probability pS, pB, and the number of
trials being Poisson with intensity γS, γB.

8If we require that τ is less or equal to the first “stealing time”, then it is not really independent of
everything, but we assume that the machine uses independence as an approximating assumption.

16



Lemma 3.1 We have

E[Nb] =
1

λ
pSγS

E[Ns] =
1

λ
pBγB

and the expected profit from buying and selling, ignoring the value of inventory, is

E[P ] =
1

λ
rBγB −

1

λ
rSγS

Moreover, we have

E[N2
b ] =

1

λ
γSpS +

2

λ2
γ2
Sp

2
S

E[N2
s ] =

1

λ
γBpB +

2

λ2
γ2
Bp

2
B

E[NbNs] =
2

λ2
γSpSγBpB

We suppose that the machine trader maximizes expected profit/loss during the interval,
but penalized by the size of the inventory, and adjusted by the value of the remaining
inventory. More precisely, the machine maximizes

E[G] := E[P ]− ρE[(Ns −Nb)
2] + vE[Nb −Ns]

where ρ is a penalization parameter, or a Lagrange multiplier for the inventory constraint,
and v can be thought of as proportional to the estimated future value of the asset.

This problem is hard in general, and we only consider the case when the human orders
are uniformly distributed.

3.1.1 Uniformly distributed orders

Let us assume uniform distributions

FB(x) =
x− A
B − A

, FS(x) =
x− C
D − C

that is, Bi, Si are respectively uniform on [A,B], [C,D].

Lemma 3.2 If FB is uniform on [A,B] and FS is uniform on [C,D], then we have

pS = FS(b) =
b− C
D − C

pB = 1− FB(s) =
B − s
B − A

rS = FS(b)[C + FS(b)(D − C)/2] =
b2 − C2

2(D − C)

rB = (1− FB(s))[B − (1− FB(s))(B − A)/2] =
B2 − s2

2(B − A)
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Proposition 3.3 For maximizing E[G], the interior first order condition with respect to s
is

s[1 + ρ
4

λ
γB

1

B − A
] = ρ+ 4ρ

γB
λ

B

B − A
− 4ρ

γS
λ

b− C
(D − C)

+ v

The interior first order condition with respect to b is

b[1 + ρ
4

λ
γS

1

D − C
] = −ρ+ 4ρ

γS
λ

C

D − C
+ 4ρ

γB
λ

B − s
(B − A)

+ v

In particular, if
A = C,B = D, γB = γS = γ

then, the interior solutions are

s =
4ργ(A+B) + vλ(B − A)

λ(B − A) + 8ργ
+ ρ

b =
4ργ(A+B) + vλ(B − A)

λ(B − A) + 8ργ
− ρ

Introducing the mean and the variance of the human orders,

µ = (A+B)/2 , σ2 = (B − A)2/12

we get

s =
8ργµ+ v

√
12λσ√

12λσ + 8ργ
+ ρ

b =
8ργµ+ v

√
12λσ√

12λσ + 8ργ
− ρ

From this proposition we find that (assuming interior solutions) the machine places

orders centered around the mid-price 8ργµ+v
√

12λσ√
12λσ+8ργ

adjusted for the inventory penalty ρ. This

mid-price is less than the mean value of the incoming orders µ when the weight v given to
the expected future asset value is small, and is otherwise larger than µ. In addition, when
ρ = 0, then the optimal orders are simply b = s = v. Furthermore, when the trading interval
until the time of new information gets longer (λ closer to zero), then the machine orders
get closer to µ± ρ. The same happens when the frequency γ of human orders gets large, or
when the variance σ2 of human orders gets small. When γ gets small, the orders get close
to v ± ρ.

3.1.2 Orders symmetric around the mean

We again assume A = C, B = D, γb = γS. Everything simplifies if we only allow the orders
of the form

b = µ− x , s = µ+ x

As discussed above, this is close to optimal if the product λσ is small relative to the product
ργ. Moreover, as stated below, with this choice the expected inventory size is zero, E[Nb −

18



Ns] = 0. Thus, the machine does not have to worry, in expected value sense, about the
future value of the asset.

If we optimize over x, it is easily seen that it is optimal to take

x = ρ.

Interpreting now ρ as a Lagrange multiplier, assume now we impose a constraint on the
inventory size as follows:

E[(Ns −Nb)
2] ≤ K (3.1)

The following result is easy to verify.

Proposition 3.4 Under our assumptions, we have

0 = pS − pB = E[Nb −Ns]

and thus
E[(Ns −Nb)

2] =
γ

λ
(pS + pB)

Moreover, the equality in (3.1) will be attained for ρ given by

ρ =
1

2
[1− λ

γ
K](B − A)

In particular,
b = µ− ρ ≥ A

Furthermore, the expected profit can be computed as

E[P ] =

√
3σ

2
K(2− λ

γ
K).

The highest inventory is attained for ρ = 0 which gives K = γ/λ. Thus, it suffices to
consider the values K < γ/λ. For K, it may be reasonable to take

K =
N2

λ2

where N is a given constant that represents the maximal allowed inventory size per unit
time.

The proposition above states that the machine’s profit is a linear increasing function of
the human orders’ volatility σ (in the domain K < γ/λ). In addition, the machine’s profit
is increasing in the frequency of human orders γ.

The machine’s profit is bounded by
√

3σ
2

γ
λ
. Thus, if there were increasingly many ma-

chines, as the total profit would have to be shared, the profit for each one would be decreas-
ing.

If we constrain the absolute size of inventory rather than its size per unit time, that is,
if K is kept fixed in a way that it does not depend on λ, the machine’s profit is increasing
in the mean length of the trading interval 1/λ. This is because more trades are likely to
be executed. This is also the case if we limit the inventory size per unit time, that is, K
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is proportional to 1/λ2, but only in the domain consisting of 1/λ small enough. For large
enough 1/λ, if the inventory per unit time is limited, then the machine’s profit is decreasing
in 1/λ.

From the expression for ρ we conclude that the machine provides less liquidity, in the
sense that ρ is larger, in the following cases: 1) the market is more volatile so that the
volatility of the orders is larger (that is, B − A is larger); 2) the humans are trying harder
to change their positions, that is, frequency γ is higher; 3) the value of K does not depend
on λ and there is less new information coming in, that is, λ is lower; 4) the value of K is
proportional to 1/λa for a > 2 and there is more new information coming in, that is λ is
higher. Note that item 1) implies, supposing that in the time of crisis the volatility and the
frequency of orders are higher, and supposing λ does not change much, that the machine
will provide less liquidity (wider bid-ask spread) when there is crisis.

Finally, we remark that if humans had perfect knowledge about the machine’s strategy,
then the humans would submit only orders with values inside the interval [b, s]. If they did
this by choosing values from a continuous distribution on [b, s], the machine would not be
able to make any trades, and would have zero profit. On the other hand, with this knowledge
it might be optimal for humans to submit orders with values b or s with positive probability,
which would place us outside of the assumptions of our model. However, because b and s
can change from one intra-trade interval to another, it is unlikely that humans would be
able to know their exact values.

4 Empirical Implications

Our results have a number of empirical implications. First, the distribution of transaction
prices (and returns) in markets with high frequency traders can be represented as a “mixture”
of the distributions of human-human and machine-human transaction prices (plus machine-
machine prices, if there is more than one machine). With the knowledge of counterparties
for each transaction, one can reconstruct the mixture. In addition, if machine strategies
can, indeed, be closely approximated by a deterministic process (e.g., bracketing the last
human transaction price), then the component of the price distribution attributed to the
machines should be forecastable. As the proportion of transactions with the machines grows,
forecastability of transaction prices should improve.9

Second, trading volume and intertrade duration, as well as measures of market liquidity
based on them, should increase in direct proportion to how much humans change the speed
of their orders when the machine is present. To the extent that it is known how many order
per unit time have been submitted (modified or canceled) by machines and humans, this
implication can be verified in the data.

Third, profits of a high frequency trader should increase in both the variance and the
arrival frequency of human orders. Again, to the extent that both the arrival frequency and
the variance of human orders can be estimated, they can be empirically compared to the
profits and losses of a high frequency trader, as well as these traders as a group.

9Even if that component of the prices is forecastable, this does not mean that one can trade on it. It
would take a machine that’s faster than the fastest current machine to take advantage of this empirical
regularity.
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5 Conclusion

We model an electronic limit order market populated by low frequency traders and then add
a high frequency trader. We postulate that low frequency traders (humans) follow certain
order submission strategies and then derive the distributions of transaction prices with and
without a high frequency trader (the machine).

We find that the presence of a machine is likely to change the average transaction price,
even in the absence of new information. We also find that in a market with a high frequency
trader, the distribution of transaction prices has more mass around the center and thinner
far tails. With a machine, mean intertrade duration decreases in proportion to the increase
in the ratio of the human order arrival rates with and without the presence of the machine;
trading volume goes up by the same rate.

We also find that a machine that optimizes expected profits subject to an inventory
constraint submits orders that are essentially symmetric around the mean value of the human
orders. The distance between the machine’s bid and ask prices increases with its concern
about the size of the remaining inventory. The expected profit of an optimizing machine
increases in both the variance and the arrival frequency of human orders.

Our model has two serious limitations. First, we do not solve for mutually best responses
of all parties; in other words, the order submission strategy that we postulate for the humans
may or may not be supported as an equilibrium strategy under general conditions. Second,
our model is static; we focus on a stationary sequence of one-period models–intervals between
two human trades.

Having said that, to our knowledge, this is the first model to formally investigate the
impact of high frequency trading on transaction prices, trading volume, and intertrade
duration, as well as to characterize the profits of a high frequency trader as a function of
the properties of low frequency traders.
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Appendix

Proofs for Section 2

Proof of Proposition 2.1: Conditioning on the number of sell orders, we get

FmSt (x) =
∞∑
k=o

[1− 1{x<µS}(1− FS(x))k]
(tγS)k

k!
e−tγS

which proves the result. Similarly for FMB
t

.
Next,

P (τ > t) = P (MB
t < mS

t )

which gives the desired expression.
If FS = FB = F , then the integral can be easily computed explicitly to get the result.

Proof of Proposition 2.2: Denote by KB
τ , KS

τ the number of newly arrived buy and
sell orders in the book at the time of trade, by MB(r), mS(q) the maximum of r buy orders
and µB, and the minimum of q sell orders and µS, and by B(r), S(q) the r−th incoming
buy order and the q−th incoming sell order. Let us also denote B(r, q) the event that, given
that there are r buy orders (plus µB) in the buy side of the book, and q sell orders (plus µS)
in the sell side of the book, the last order was a buy order. Similarly for S(r, q), except the
sell order was the last. Then, we have

P (B(r, q)) =

(
r − 1 + q

q

)
pr(1− p)q

P (S(r, q)) =

(
r − 1 + q

r

)
pr(1− p)q

Notice that we have
∞∑
q=0

(
r − 1 + q

q

)
(1− p)q = p−r

∞∑
r=0

(
r − 1 + q

r

)
pr = (1− p)−q

Also note that we have

P (mS(q) ≤ x) = 1− 1{x<µS}(1− FS(x))q

so that
dFmS(q)(x) = 1{x<µS}q(1− FS(x))q−1dFS(x)

and similarly
P (MB(r) ≤ x) = 1{x≥µB}(FB(x))r

dFMB(r)(x) = 1{x≥µB}r(FB(x))r−1dFB(x)
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Using the above, we have

P (MB
τ ≤ x) =

∑
r,q

P (MB
τ ≤ x,KB

τ = r,KB
τ = q)

=
∑

r≥1,q≥0

P (MB
τ ≤ x,KB

τ = r,KB
τ = q, B(r, q)) +

∑
r≥0,q≥1

P (MB
τ ≤ x,KB

τ = r,KB
τ = q, S(r, q))

=
∑

r≥1,q≥0

P (B(r, q))P (MB(r) ≤ x,MB(r − 1) ≤ mS(q) ≤ B(r))

+
∑

r≥0,q≥1

P (S(r, q))P (S(q) < MB(r) ≤ min{x,mS(q − 1)})

Conditioning on mS(q) in the first term and on MB(r) in the second term, we get

P (MB
τ ≤ x) = 1{x>µB}

∑
r≥1,q≥0

∫ x∧µS

µB

P (B(r, q))F r−1
B (y)[FB(x)− FB(y)]q(1− FS(y))q−1dFS(y)

+1{x>µS}
∑

r≥1,q≥0

P (B(r, q))P (mS(q) = µS)F r−1
B (µS)[FB(x)− FB(µS)]

+
∑

r≥0,q≥1

∫ x∧µS

µB

P (S(r, q))FS(y)[1− FS(y)]q−1rF r−1
B (y)dFB(y)

+1{x>µB}
∑

r≥0,q≥1

P (S(r, q))P (MB(r) = µB)[1− FS(µB)]q−1FS(µB)

Inside the first integral we have a sum of the form∑
r,q

(
r − 1 + q

q

)
qxq−1yr−1

This is a derivative with respect to x of the sum∑
r,q

(
r − 1 + q

q

)
xqyr−1 =

∑
r

yr−1

(1− x)r

Thus, taking the derivative, we get the sum

1

(1− x)2

∑
r

r

(
y

1− x

)r−1

=
1

(1− x)2

1

(1− y
1−x)2

Setting
x = (1− p)(1− FS(y)) , y = pFB(y)

we get the result for the first integral in the distribution of MB. The second integral is
obtained in a similar manner, and the second and fourth non-integral terms are obtained by
direct summation, taking into account that

P (MB(r) = µB) = F r
B(µB) , P (mS(q) = µS) = [1− FS(µS)]q

24



Similarly, we have

P (mS
τ ≤ x) =

∑
r,q

P (mS
τ ≤ x,KB

τ = r,KB
τ = q)

=
∑

r≥1,q≥0

P (B(r, q),MB(r − 1) ≤ mS(q) ≤ x ∧B(r))

+1{x>µS}
∑

r≥1,q≥0

P (B(r, q))P (mS(q) = µS)F r−1
B (µS)[1− FB(µS)]

+
∑

r≥0,q≥1

P (S(q) ≤ x ∧MB(r),MB(r) ≤ ms(q − 1), S(r, q))

+
∑

r≥0,q≥1

P (S(r, q))P (MB(r) = µB)[1− FS(µB)]q−1FS(x ∧ µB)]

Similarly as above, conditioning on mS(q) in the first two terms and on MB(r) in the last
two terms, and by summation, we get the result.

The distribution of the transaction prices is now easily determined as above, from its
definition.

Derivations related to Remark 2.1

Let x be a submitted buy order. Denote

pB1 (x) = P (x executed at arrival)

pB2 (x) = P (x executed after arrival)

and similarly pSi (x) if x is a sell order.
Let us suppose that a buy trader has the value v for the asset, at the time of the next

trade. Given that the trader submits a buy order x, and his utility function is U , denoting
by τx the time of his arrival and recalling that mS

t denotes the minimum sell order in the
book at time t, his expected profit is

p1E[U(v −mS
τx) | x executed at arrival] + p2U(v − x)

Let us now change the variables to
u := FB(x)

and denote by π(u) the corresponding expected profit. Then, u is uniformly distributed,
and a necessary condition for a symmetric equilibrium is that π′(u) = 0.

Proposition 5.5 We have

pB1 (x) =

∫ x

0

dFS(y)
γSγB

[2γB + γSFS(y)− γBFB(y)]2

pB2 (x) =
γBγSFS(x)

{2γB + γSFS(x)− γBFB(x)}{γB[1− FB(x)] + γSFS(x)}
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In case FS = FB, γS 6= γB, and in terms of variable u, we can write (with a slight abuse of
notation p1),

pB1 (u) =
γSγB
γS − γB

(
1

2γB
− 1

2γB + (γS − γB)u
)

We also have

pS1 (x) =

∫ ∞
x

dFB(y)
γSγB

[γB + γS + γSFS(y)− γBFB(y)]2

pS2 (x) =
γBγS[1− FB(x)]

{γB + γS + γSFS(x)− γBFB(x)}{γB[1− FB(x)] + γSFS(x)}
Moreover, the density of the minimum of sell orders at time of arrival of buy order x, denoted
fmx , lives on (0, x), and is given by

fmx (z) = 1{x>z}
(pB1 )′(z)

pB1 (x)

Similarly, the density of the maximum of sell orders at time of arrival of sell order x, denoted
fMx , lives on (x,∞), and is given by

fMx (z) = −1{z>x}
(pS1 )′(z)

pS1 (x)

Let us assume linear utility for the buyer. Denote by A1 the event that buy order x is
executed at arrival. Then, the trader’s utility is

pB1 (x)E[v −mS
τx|A1] + (vB − x)pB2 (x) = pB1 (x)vB −

∫ x

0

z(pB1 )′(z)dz + (vB − x)pB2 (x)

If FB = FS, we get
pB1 (x) = F (x)/4 , pB2 (x) = F (x)/2

In terms of the variable F (x) = u, denoting by β the inverse of F , this then becomes

1

4
[vBu−

∫ β(u)

0

zF ′(z)dz] +
1

2
u[vB − β(u)]

Taking derivative, setting it equal to zero, solving the obtained ODE for β(u) and inverting,
we get

F (x) = c(vB − x)−2/3

A similar computation for the seller gives

F (x) = 1− c(x− vS)−2/3

Thus, the assumption of FS = FB is not tenable in this equilibrium.
Proof of Proposition 5.5: The execution probability can be decomposed over the

event that the order was executed as as soon as it arrived, and over the event that it was
executed later, but before any other order was executed. The probability over the first event,
by conditioning over the time t of the arrival of x, over the number r of buy orders by time
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t and the number q of sell orders by time t, and over the minimum y of those q sell orders,
is given by

p1 := P (x executed at arrival)

=
∑

r≥0,q≥1

∫ ∞
0

γBe
−γBtdt

∫ x

0

q(1− FS(y))q−1dFS(y)e−γBt
(γBt)

r

r!
e−γSt

(γSt)
q

q!
F r
B(y)

=
∑
q≥1

∫ ∞
0

γBe
−γBtdt

∫ x

0

q(1− FS(y))q−1dFS(y)e−γBt[1−FB(y)]e−γSt
(γSt)

q

q!

=

∫ ∞
0

γSγBte
−γBtdt

∫ x

0

dFS(y)e−γBt[1−FB(y)]e−γStFS(y)

=

∫ x

0

dFS(y)
γSγB

[γB(2− FB(y)) + γSFS(y)]2

Denote now, similarly as before, by S(r, q) the event that at the execution of order x,
there were r buy orders and q sell orders that arrived after x, which necessarily implies that
q ≥ 1, and that the last order that arrived was a sell order. The probability of execution of
x at some time after it arrived can be obtained by conditioning over the time t of the arrival
of x, over the number k of buy orders by time t and the number l of sell orders by time t,
and on the number r of buy orders and the number q of sell orders that arrived between
time t and the time of execution. This probability is given by

p2 := P (x executed after arrival)

=
∑

k≥0,l≥0

∑
r≥0,q≥1

∫ ∞
0

γBe
−γBtdte−γBt

(γBt)
k

k!
e−γSt

(γSt)
l

l!

×P (MB(k) < x < mS(l), S(r, q),MB(r) ∨ S(q) ≤ x < mS(q − 1))

=
∑

r≥0,q≥1

∫ ∞
0

dtγBe
−γBt[2−FB(x)]e−γStFS(x)P (S(r, q),MB(r) ∨ S(q) ≤ x < mS(q − 1))

=
γB

γB(2− FB(x)) + γSFS(x)

∑
r≥0,q≥1

(
r − 1 + q

r

)
pr(1− p)qF r

B(x)FS(x)[1− FS(x)]q−1

=
γB

γB(2− FB(x)) + γSFS(x)

∑
q≥1

(1− p)qFS(x)[1− FS(x)]q−1

[1− pFB(x)]q

=
γB

γB[2− FB(x)] + γSFS(x)

(1− p)FS(x)

p[1− FB(x)] + (1− p)FS(x)

For pSi the proof is similar.
Recall that A1 is the event that buy order x is executed at arrival. Let us now compute

P (mS
τx ≤ z|A1) by computing

P (mS
τx ≤ z, A1)

= 1{x≤z}P (A1)+1{x>z}
∑

r≥0,q≥1

∫ ∞
0

γBe
−γBtdt

∫ z

0

q(1−FS(y))q−1dFS(y)e−γBt
(γBt)

r

r!
e−γSt

(γSt)
q

q!
F r
B(y)
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= 1{x≤z}p1(x) + 1{x>z}

∫ z

0

dFS(y)
γSγB

[γB(2− FB(y)) + γSFS(y)]2

Thus, we get

P (mS
τx ≤ z|A1) = 1{x≤z} + 1{x>z}

p1(z)

p1(x)

Therefore, the corresponding (conditional) density, denoted fmx , lives on (0, x), and is given
by

fmx (z) = 1{x>z}
p′1(z)

p1(x)

Proof is similar for the sell side.

Proofs for Section 3

Proof of Proposition 3.1: Similarly as with no machine, using the expressions for the
distributions of MB

t and mS
t .

Proof of Proposition 3.2: We have

P (Pτ ≤ x) =
∑

r≥0,q≥1

P (S(r, q))P (S(q) < MB(r) ≤ min{x, s,mS(q − 1)},mS(q − 1) > b)

+
∑

r≥1,q≥0

P (B(r, q))P (MB(r − 1) < s,MB(r − 1) ∨ b ≤ mS(q) ≤ B(r) ∧ x)

+
∑

r≥1,q≥0

P (B(r, q))P (s ∨MB(r − 1) ≤ B(r) ≤ mS(q) ∧ x,MB(r − 1) < s,mS(q) > b)

+
∑

r≥0,q≥1

P (S(r, q))P (MB(r) ≤ S(q) ≤ b ∧ x,MB(r) < s,mS(q − 1) > b)

The first term comes from the last order being a human sell order and trading with a
human buy order in the book, and the second term from the last order being a human buy
order and trading with a human sell order in the book. The third term comes from an
incoming buy order trading with the machine, and the fourth term comes from an incoming
sell order trading with the machine. The first two terms are computed similarly as with no
machine. Conditioning on B(r) in the third term and on S(q) in the fourth, and computing
the summations similarly as with no machine, we get the result.

Proof of Corollary 3.3: From the proposition, we have

P (Pτ ≤ x) = 1{x<b}
p(1− p)

(B − A)(D − C)

∫ x

C

y − C
[(1− p) b−C

D−C + p B−y
B−A ]2

dy

+1{x>b}
p(1− p)

(B − A)(D − C)

∫ x∧s

b

y − C
[(1− p) y−C

D−C + p B−y
B−A ]2

dy
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+1{x<s}
p(1− p)

(B − A)(D − C)

∫ x

b

B − y
[(1− p) y−C

D−C + p B−y
B−A ]2

dy

+1{x>s}
p(1− p)

(B − A)(D − C)

∫ x∧B

s

B − y
[(1− p) y−C

D−C + p B−s
B−A ]2

dy

+1{x>s}
p

B − A

∫ x∧B

s

1

(1− p) y−C
D−C + p B−s

B−A
dy

+
1− p
D − C

∫ x∧b

C

1

(1− p) b−C
D−C + p B−y

B−A
dy

We then get the density by differentiating.
Proof of Lemma 3.1: We have

E[N2
b |τ ] = E

 ∞∑
n=1

(
n∑
i=0

1b>Si

)2

e−γSτ
(γSτ)n

n!

∣∣∣τ


=
∞∑
n=1

[npS(1− pS) + n2p2
S]e−γSτ

(γSτ)n

n!

= γSτpS + γ2
Sτ

2p2
S

After integrating over τ , we get

E[N2
b ] =

1

λ
γSpS +

2

λ2
γ2
Sp

2
S

and analogously

E[N2
s ] =

1

λ
γBpB +

2

λ2
γ2
Bp

2
B

Similarly, we have

E[NbNs|τ ]

= E[Nb|τ ]E[Ns|τ ]

= τ 2pSγSpBγB

so that

E[NbNs] =
2

λ2
γSpSγBpB

The other expressions are proved in a similar fashion.

Proof of Proposition 3.3:
Since with uniform distribution we have

rS =
b2 − C2

2(D − C)
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rB =
B2 − ŝ2

2(B − A)

we need to maximize
1

λ
γB[

B2 − s2

2(B − A)
]− 1

λ
γS

b2 − C2

2(D − C)

−ρ

[
1

λ
γB

B − s
B − A

+
1

λ
γS

b− C
D − C

+
2

λ2

(
γB

B − s
B − A

− γS
b− C
D − C

)2
]

The interior first order condition with respect to s is

s[1 + ρ
4

λ
γB

1

B − A
] = ρ+ 4ρ

γB
λ

B

B − A
− 4ρ

γS
λ

b− C
(D − C)

The interior first order condition with respect to b is

b[1 + ρ
4

λ
γS

1

D − C
] = −ρ+ 4ρ

γS
λ

C

D − C
+ 4ρ

γB
λ

B − s
(B − A)

If A = C, B = D, γB = γS = γ, then, if we add the two conditions we get

(s+ b)α = β

where

α = [1 + ργ
8

λ

1

B − A
]

and

β = 8ρ
γ

λ

A+B

B − A
Subtracting we get

(s− b)κ = δ

where
κ = 1

and
δ = 2ρ

Solving this we get

s =
κβ + αδ

2κα

b =
κβ − αδ

2κα

and substituting we get

s =
4ργ(A+B)

λ(B − A) + 8ργ
+ ρ

b =
4ργ(A+B)

λ(B − A) + 8ργ
− ρ
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2	 April	2010

Market Access Risk Management Recommendations

April	2010

On	behalf	of	the	Futures	Industry	Association	Market	Access	Working	Group,	we	are	pleased	
to	present	recommendations	for	managing	the	risk	of	direct	access	trading.	Recognizing	
the	importance	of	promoting	best	practices	in	this	area,	the	FIA	board	of	directors	in	
January	2010	agreed	to	assemble	a	committee	to	formulate	best	practices	for	direct	access	
to	exchanges.	The	group	includes	representatives	from	clearing	firms,	trading	firms,	and	
exchanges.	The	scope	of	their	work	includes	pre-trade	order	checks,	post-trade	checks,	co-
location	policies,	conformance	testing,	and	error	trade	policies.

The	study	will	be	shared	with	futures	and	options	exchanges	around	the	world.	Later	this	
year,	FIA	plans	to	survey	exchanges	that	offer	direct	access	to	determine	what	types	of	risk	
controls	are	in	place	and	publish	the	results	of	the	survey.		

We	appreciate	the	time	and	resources	the	members	of	the		Market	Access	Working	Group	
contributed	to	the	creation	of	this	document.	This	is	not	the	first	group	FIA	has	convened	
to	address	risk	management	practices.	In	2004,	FIA	published	a	series	of	recommendations	
on	error	trade	polices.	In	2007,	FIA	published	the	results	of	a	survey	on	risk	controls	at	key	
exchanges.	In	2009,	the	FIA/FOA	Clearing	Risk	Study	included	recommendations	for	pre-	
and	post-trade	risk	controls.	

We	expect	the	need	for	risk	controls	to	continue	to	evolve	as	the	industry	evolves	and	FIA	is	
committed	to	monitoring	and	supporting	practices	and	procedures	that	improve	the	integrity	
of	the	markets.

Yours	truly,

Peter Johnson
Chairman
Market	Access	Working	Group

FIA Market Access Working Group
The following organizations participated in the development of the FIA	Market	Access	Risk	
Management	Recommendations:

•	Bank	of	America	Merrill	Lynch
•	Barclays	Capital
•	CME	Group
•	Credit	Suisse
•	DRW	Trading
•	Eurex
•	Geneva	Trading

•	IntercontinentalExchange
•	J.P.	Morgan	Futures
•	Newedge	Group
•	Nico	Trading
•	NYSE	Liffe
•	XR	Trading

The FIA is the U.S.-based international trade association which acts as a principal spokesman for 
the futures and options industry. Its membership includes the world’s largest futures brokers as well as 
derivatives exchanges from more than 20 countries.
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Market Access Risk Management Recommendations

Managing	the	risk	of	providing	direct	access	to	an	exchange’s	network	is	a	critically	
important	responsibility	of	all	parties	involved	in	the	process—clearing	firms,	exchanges,	and	
the	direct	access	firms	themselves.	However,	managing	such	risk	must	be	done	in	a	manner	
that	does	not	disadvantage	one	direct	access	firm	over	another	solely	because	it,	or	its	clearing	
firm,	endeavors	to	act	more	responsibly.	This	can	only	be	done	if	exchanges	themselves	
provide	basic	risk	management	tools,	and	construct	them	in	such	a	manner	that	latency	is	
identical	to	all	direct	access	firms,	no	matter	how	clearing	firms	utilize	such	tools.	Indeed,	this	
will	encourage	the	clearing	firm	to	employ	such	tools	in	the	most	responsible	fashion,	without	
fear	that	it	will	lose	business	to	other	clearing	firms	that	do	not	act	so	responsibly.	

Recognizing	the	importance	of	promoting	best	practices	in	risk	management	of	direct	access	
trading,	the	FIA	board	of	directors	in	January	2010	established	a	Market	Access	Working	
Group	to	identify	risk-specific	controls	that	are	already	in	place	at	exchanges,	clearing	and	
trading	firms	and	recommend	controls	that	should	be	in	place	as	a	matter	of	best	practice	
before	allowing	direct	access.	The	MAWG	consists	of	representatives	from	clearing	firms,	
exchanges,	and	trading	firms.	The	group	has	been	meeting	since	January	to	agree	on	
recommendations	for	pre-	and	post-trade	risk	controls,	co-location,	conformance	testing,	and	
error	trade	policies.	

Latency-sensitive	traders,	which	rely	on	direct	access,	can	play	a	vital	role	in	the	marketplace,	
bringing	liquidity	to	the	markets,	reducing	volatility,	tightening	bid-ask	spreads,	and	
contributing	to	price	discovery1.		The	recommendations	presented	here	represent	another	
step	in	improving	the	way	direct	access	risk	is	managed.		The	industry	has	been	working	
together	for	several	years	to	ensure	risk	management	practices	reflect	the	realities	of	the	
current	trading	environment.	In	2004,	FIA	published	a	series	of	recommendations	with	
respect	to	exchange	error	trade	policies	and	procedures.	In	2007,	FIA	published	a	“Profile	
of	Exchange	and	FCM	Risk	Management	Practices	for	Direct	Access	Customers,”	which	
identified	issues	with	this	type	of	trading	and	enumerated	the	results	of	a	survey	of	risk	
controls	at	key	exchanges.	The	FIA/FOA	Clearing	Risk	Study,	released	in	February	2009,	
included	recommendations	for	exchanges	to	implement	pre-defined	authorizations,	position	
limits,	and	monitoring	and	intervention	capabilities.		

The	current	project	establishes	principles	the	industry	should	consider	when	allowing	
direct	access	to	exchanges.	Although	the	guidelines	contained	in	this	document	are	more	
generally	suited	to	futures	and	options	markets,	many	of	the	principles	and	recommended	
implementations	are	applicable	to	other	types	of	markets.	The	MAWG	recognizes	that	
market	structures	vary	and	exchanges	need	to	implement	risk	controls	across	multiple	product	
lines.	For	example,	some	exchanges	offer	both	equities	and	futures	on	the	same	trading	
platform.	The	MAWG	also	acknowledges	that	exchanges	are	in	varying	stages	of	permitting	
direct	access	and	therefore	these	recommendations	may	not	be	immediately	achievable.	
Instead,	these	recommendations	are	put	forth	as	agreed-upon	principles	that	the	global	
futures	industry	needs	to	work	toward	implementing.	In	addition,	the	MAWG	recognizes	
that	these	recommendations	must	be	considered	in	the	context	of	the	regulatory	structures	in	
which	markets	operate.

1	See	Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market	by	Alain	Chaboud,	Benjamin	
Chiquoine,	Erik	Hjalmarsson,	Clara	Vega,	in	which	the	empirical	data	examined	by	the	authors	suggested	that,	in	
the	spot	interdealer	foreign	exchange	market,	“the	presence	of	algorithmic	trading	reduces	volatility”	and	“computers	
do	provide	liquidity	during	periods	of	market	stress.”			(International	Finance	Discussion	Paper,	Board	of	Governors	
of	the	Federal	Reserve	System,	dated	October	2009,	p.	26.)

Introduction
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This	document	is	designed	to	serve	as	a	framework	for	developing	risk	controls.	It	attempts	to	
strike	the	right	balance	between	guiding	principles	and	prescriptive	mandates.	Accordingly,	
this	document	reflects	two	types	of	recommendations:	principles	and	implementation	
recommendations.	The	first	type	is	a	guiding	principle	that	describes	the	type	of	control	and	
what	should	be	achieved	by	implementing	the	control.	The	principles,	in	some	cases,	are	
followed	by	implementation	recommendations.		

The	document	includes	a	section	on	co-location	and	proximity	hosting.	Co-location	and	
proximity	hosting	have	often	been	included	in	discussions	related	to	risks	associated	with	
high-frequency	trading,	but	the	MAWG	does	not	believe	this	is	a	risk	management	issue.	
Co-location	and	proximity	hosting	refer	to	data	centers	that	offer	an	alternative	method	to	
brokerage	and	trading	firms	seeking	the	fastest	possible	access	to	an	exchange’s	network	and	
are	not	inherently	risky.	Co-location	takes	place	when	the	exchange	provides	connectivity	
and	hosting	in	its	own	data	center	via	its	own	network.	Proximity	sites	are	data	centers	
offered	by	an	exchange	or	a	third-party	vendor	for	low-latency	access	to	an	exchange’s	
network	via	a	third-party	network	connection.	

Direct	access	firms	either	join	the	exchanges	as	non-clearing	members	(NCMs)	or	access	
the	exchanges	in	the	name	of	their	clearing	member.	While	there	is	no	distinction	between	
a	direct	access	firm	that	becomes	a	non-clearing	member	of	an	exchange	and	one	that	
does	not	when	it	comes	to	risk	and	credit	controls,	NCMs	are	subject	to	an	exchange	
membership	approval	and	vetting	process.	NCMs	also	are	subject	to	exchange	rules	such	as	
market	manipulation,	wash	trades	and	message	limit	violations.	In	either	case,	these	firms’	
transactions	must	be	financially	guaranteed	by	a	clearing	member	before	the	exchange	grants	
direct	access	to	these	firms.	The	clearing	firm	guarantees	the	trades	pursuant	to	an	agreement	
with	the	trading	firm	and	retains	administrative	and	risk	control	over	orders	submitted	to	the	
exchange	trading	engine.

There	are	three	ways	a	non-clearing	firm	can	access	the	exchange	network	directly:		
a.	 Direct	access	via	a	clearing	firm	(DA-C)—trading	firm	orders	pass	through	the	

clearing	member’s	system	prior	to	reaching	the	exchange	trading	engine.	
b.	 Direct	access	via	vendor	(DA-V)—trading	firm	routes	orders	through	a	vendor	

controlled	by	the	clearing	firm	or	other	third-party	infrastructure	to	the	exchange	
trading	engine.	

c.	 Direct	access	to	the	exchange	(DA-E)—trading	firm	routes	orders	directly	to	the	
exchange	trading	engine	without	passing	through	the	clearing	member	or	a	third-
party	infrastructure.

Risk	management	of	direct	access	market	participants	is	not	the	exclusive	responsibility	of	
exchanges,	clearing	firms	or	even	the	direct	access	firms	themselves.	Rather,	exchanges,	clearing	
firms,	and	direct	access	firms	each	have	a	role	in	ensuring	that	appropriate	risk	controls	are	
in	place	for	this	type	of	market	access.	Clearing	firms	that	frequently	manage	many	exchange	
interfaces	would	benefit	greatly	from	standardization	of	risk	management	controls	across	
exchanges.	The	more	standardization	of	risk	controls,	the	more	efficiently	and	effectively	
clearing	firms	are	able	to	monitor	and	manage	the	risks	associated	with	direct	access	clients.

Background
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Trading	firms	typically	have	risk	controls	in	place	to	monitor	and	risk-manage	their	trading	
systems.		These	protections	operate	within	their	risk	model	and	include	pre-trade	risk	
controls	e.g.	order	size	limits.	Below	is	a	sample	of	risk	controls	frequently	employed	by	
trading	firms.		Although	these	controls	represent	good	practice,	they	are	not	uniformly	
enforceable	by	exchanges	or	clearing	firms.

•	 Conformance	Testing.	Trading	firms	are	required	to	pass	conformance	testing	with	
the	party	providing	access	when	implementing	a	new	direct	access	system	or	when	
the	exchange	deems	it	necessary	because	of	a	fundamental	change	in	functionality	
on	the	exchange	side.		The	onus	is	on	the	trading	firm	to	determine	when	it	must	
recertify	due	to	a	change	in	logic	within	its	system.

•	 Heartbeating	with	the	Exchange.	Trading	systems	can	monitor	“heartbeats”	with	the	
exchange	to	identify	when	connectivity	to	the	exchange	is	lost.		If	connectivity	is	
lost,	the	system	is	disabled	and	working	orders	are	cancelled.	

•	 Kill	Button.	Trading	systems	can	have	a	manual	“kill	button”	that,	when	activated,	
disables	the	system’s	ability	to	trade	and	cancels	all	resting	orders.

•	 Pre-Trade	Risk	Limits.	Trading	firms	can	establish	and	automatically	enforce	
pre-trade	risk	limits	that	are	appropriate	for	the	firms’	capital	base,	clearing	
arrangements,	trading	style,	experience,	and	risk	tolerance.		These	risk	limits	can	
include	a	variety	of	hard	limits,	such	as	position	size	and	order	size.		Depending	on	
the	trading	strategy,	these	limits	may	be	set	at	several	levels	of	aggregation.		These	
risk	limits	can	be	implemented	in	multiple	independent	pre-trade	components	of	a	
trading	system.

•	 Post-Trade	Risk	Limits.	Trading	firms	can	also	establish	and	automatically	enforce	
post-trade	risk	limits	that	are	appropriate	for	the	firm’s	capital	base,	clearing	
arrangements,	trading	style,	experience,	and	risk	tolerance.		For	example,	a	
trading	firm	can	set	daily	loss-limits	by	instrument,	asset	class,	and	strategy	and	
automatically	close	out	or	reduce	positions	if	those	limits	are	breached.		

•	 Fat-Finger	Quantity	Limits.	Trading	systems	can	have	upper	limits	on	the	size	of	the	
orders	they	can	send,	configurable	by	product.		They	can	prevent	any	order	for	a	
quantity	larger	than	the	fat-finger	limit	from	leaving	the	system.

•	 Repeated	Automated	Execution	Throttle.	Automated	trading	systems	can	have	
functionality	in	place	that	monitors	the	number	of	times	a	strategy	is	filled	and	then	
re-enters	the	market	without	human	intervention.		After	a	configurable	number	of	
repeated	executions	the	system	will	be	disabled	until	a	human	re-enables	it.		

•	 Near-Time	Reconciliation.	Trading	systems	can	have	functionality	in	place	that	
accepts	drop-copies	from	exchanges	and	clearing	firms.	Drop	copies	are	duplicate	
copies	of	orders	that	allow	a	firm	to	compare	the	exchange	or	clearing	firm	view	
of	trades	and	positions	with	the	firm’s	internal	view.		This	helps	to	assure	that	all	
systems	are	performing	as	expected	and	maintaining	accurate	and	consistent	views	of	
trades	and	positions.

•	 Reasonability	Checks.	Trading	systems	can	have	“reasonability	checks”	on	incoming	
market	data	as	well	as	on	generated	values.

Role of
Direct Access Participant
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The	management	of	client	risk	by	clearing	firms,	and	of	clearing	member	risk	by	
clearinghouses,	has	evolved	as	trading	has	moved	from	exchange	floors	to	computer	screens.	
In	most	respects,	risk	controls	have	strengthened.

Clearing	firms	direct	significant	resources	toward	managing	and	monitoring	risk	and	refining	
approaches	to	assessing	clients’	risk	exposure.	Clearing	firms	frequently	employ	the	following	
risk	management	controls	with	direct	access	clients:	

•	 Most	exchanges	and	self-regulatory	organizations	(SROs)	require	the	clearing	firm	to	
ensure	that	the	trading	firm	has	pre-trade	risk	controls	in	place.	Clearing	firms	may	
require	the	trading	firm	to	provide	network	access	to	the	trading	firm’s	pre-trade	risk	
controls	to	allow	a	clearing	firm	to	set	various	risk	limits	and,	if	appropriate,	stop	the	
trading	firm’s	trading.	Network	access	is	technically	difficult	to	achieve,	however,	
and	trading	firms	can	override	risk	controls	set	by	clearing	firms.

•	 The	clearing	firm	will	conduct	substantial	due	diligence	on	prospective	direct	access	
clients	and	will	grant	direct	access	rights	only	to	those	clients	who	are	deemed	
sufficiently	creditworthy	and	whose	internal	controls	are	deemed	sufficiently	strong	
that	pre-trade	monitoring	by	the	clearing	firm	is	less	essential.	A	clearing	firm	may	
also	require	additional	collateral	to	provide	further	certainty	that	the	trading	firm	
will	be	able	to	meet	any	obligations	that	might	arise	from	trading.	In	addition,	the	
clearing	firm	will	monitor	the	trading	firm’s	account	to	determine	whether	margin	
requirements	are	being	met.

•	 Trading	firms	are	judged	on	their	willingness	to	share	information	with	their	clearing	
firm.	The	more	transparent	a	client	is	willing	to	be,	the	more	likely	the	clearing	firm	
is	to	grant	direct	access.	

•	 Clearing	firms	have	risk	controls	built	into	order	entry	systems	they	offer	trading	
firms.	These	risk	controls	include	many	of	the	controls	described	later	in	this	
document.	

•	 Increasingly,	clearing	firms	are	depending	on	the	exchanges	to	provide	pre-trade	risk	
controls.	Often,	limits	on	the	exchange	systems	can	be	configured	and	monitored	
by	the	clearing	firms.		This	ensures	that	risk	controls	do	not	become	a	source	of	
competition	between	clearing	firms.

•	 Finally,	clearing	firms	have	agreements	with	trading	firms	that	require	the	trading	
firms	to	have	specified	risk	controls	in	place,	restrict	access	to	authorized	personnel,	
and	comply	with	relevant	rules.	Clearing	firms	monitor	and	enforce	compliance	with	
these	agreements	on	an	ongoing	basis.	

Role of
Clearing Firm
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The	primary	business	and	function	of	exchanges	is	matching	and	clearing	trades,	regulating	
their	market,	and	ensuring	that	the	market	operates	safely	with	minimal	systemic	risk	in	order	
to	sustain	the	overall	viability	of	the	market.	The	default	or	failure	of	the	client	of	a	clearing	
member	has	no	immediate	risk	consequences	for	the	clearinghouse	unless	it	causes	losses	that	
lead	to	the	default	or	failure	of	the	clearing	member.	However,	the	provision	of	controls	to	
help	avoid	such	events	must	be	regarded	as	a	priority	of	any	exchange	in	order	to	protect	the	
overall	integrity	of	its	marketplace,	and	in	recognition	and	support	of	the	risk	management	
role	undertaken	by	clearing	members.	

Exchanges	have	in	place	well-defined	policies	and	procedures	describing	the	responsibilities	
of	clearing	firms	and	direct	access	firms.

•	 Exchange	rules	may	require	that	clearing	firms	implement	specified	risk	management	
standards	with	regard	to	direct	access	clients.		The	exchange’s	requirements	and	
onboarding	processes	for	clearing	firms	and	their	direct	access	customers	encompass	
and	support	the	risk	management	standards.		The	exchange	processes	may	include:	
legal	paperwork,	system	certifications,	and	permissioning	security.

•	 Clearing	firms	for	directly	connected	entities	must	follow	recommended	exchange	
guidelines	for	direct	access,	including	in	many	cases	requirements	that	clearing	firms	
configure	and	monitor	automatic	risk	limits	and	that	they	maintain	the	ability	to	
halt	a	client’s	trading	system,	if	appropriate.	

•	 Exchanges	have	the	ability	to	establish	an	error	trade	policy	that	provides	a	uniform	
set	of	policies	and	procedures	that	are	followed	in	the	event	of	an	error.

•	 Exchanges	have	the	ability	to	enable	or	restrict	access	per	established	rules.
•	 Exchanges	establish	rules	surrounding	processes	to	ensure	that	direct	connections	are	

guaranteed	by	clearing	firms.
•	 Exchanges	make	non-clearing	entities	and	system	providers	aware	of	exchange	

rules	and	responsibilities	in	the	processes	surrounding	connectivity	and	electronic	
trading	and	ask	them	to	certify	to	the	exchange	and	clearing	firm	their	capabilities	
to	provide	risk	management	functionality.

Role of
Exchange
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1. Execution Risk Tools 
Pre-trade	order	checks	are	risk	controls	put	in	place	to	prevent	execution	of	a	trade	because	of	
error	or	“fat-finger”	problems,	or	a	client	trading	beyond	authorized	trading	limits.	Pre-trade	
risk	controls	can	be	put	in	place	at	the	trading	firm,	clearing	firm,	or	exchange	level.	Pre-trade	
risk	controls	have	become	a	point	of	negotiation	between	trading	firms	and	clearing	members	
because	they	can	add	latency	to	a	trade.	To	avoid	such	negotiations,	the	MAWG	believes	
that	certain	risk	controls	should	reside	at	the	exchange	level	and	be	required	for	all	trading	
to	ensure	a	level	playing	field.	The	right	to	set	and	manage,	or	authorize	a	trading	firm	to	set	
and	manage,	any	pre-	or	post-trade	order	checks	at	the	exchange’s	matching	engine,	however,	
should	reside	with	the	clearing	firm.	

Recommended Implementation: 
•	 To	reduce	the	inevitable	errors	that	occur	with	manual	data	entry,	exchanges	should	

work	towards	providing	a	standard	communication	protocol	that	would	allow	firms	
to	automate	setting	and	updating	risk	parameters	for	individual	trading	entities.		
This	would	also	give	clearing	firm	risk	managers	the	ability	to	more	efficiently	
disable	a	client	from	multiple	exchanges	simultaneously.		An	API	based	on	an	
agreed	standard	protocol	such	as	FIX	would	be	the	preferred	method	for	entering	and	
updating	limits.

•	 Unless	otherwise	indicated,	exchange	risk	control	systems	should	provide	clearing	
firms	with	the	ability	to	define	risk	controls	by	product.	All	limits	should	be	set	by	
positive	permissioning.	The	auto-default	should	be	set	to	zero	(i.e.	clearing	firm	will	
set	limits	only	for	the	products	that	they	are	allowing	the	trading	firm	to	trade).	

a. Order Size
Quantity-per-order	limits	are	the	most	basic	types	of	pre-trade	risk	management	tools	to	
help	prevent	accidental	“fat-finger”	incidents.	This	type	of	limit	sets	a	maximum	number	of	
contracts	that	can	be	bought	or	sold	per	order.	

Principle: 
Quantity-per-order	limits	should	be	mandatory:	
(a)	The	clearing	firm	should	establish	limits	with	the	trading	firm	to	avoid	generating	and	
sending	erroneously-sized	orders	to	the	market.	Occasionally,	larger-sized	orders	are	legitimate.	
In	such	cases,	the	trading	firm	needs	to	contact	the	clearing	firm	to	adjust	their	limits.
(b)	The	exchange	should	provide	default	limits	to	protect	the	integrity	of	its	market.	

Recommended Implementation: 
A	clearing	firm	providing	direct	access	to	a	market	should	have	visibility	to	the	limits	and	the	
ability	to	set	appropriate	limits	for	the	trading	firm’s	activity,	regardless	of	whether	the	trading	
firm	accesses	the	market	directly	(DA-E),	through	the	clearing	member	system	(DA-C)	or	
through	a	third-party	system	(DA-V).

•	 Risk	controls	need	to	be	sophisticated	enough	to	allow	the	clearing	firm	to	set	pre-
trade	limits	per	product	for	each	client	and	prevent	trading	beyond	established	
limits.	Different	sized	limits	are	required	for	more	liquid	versus	less	liquid	
instruments	(e.g.,	front	month	versus	back	month	futures	or	options,	in-the-money	
versus	out-of-the-money	options).

•	 Trading	firm	access	to	products	should	be	blocked	until	limits	are	established	by	the	
clearing	firm.	Default	limits	should	not	allow	“unlimited”	trading.	In	addition,	the	
clearing	firm	would	like	to	have	the	ability	to	set	controls	for	multiple	products	at	
one	time.

Market Access
Recommendations
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b. Intraday Position Limits
Intraday	position	limits	give	the	clearing	firm	the	ability	to	block	a	trading	firm	from	
increasing	its	positions	beyond	a	set	threshold.	Limits	placed	at	the	exchange	level,	rather	
than	the	order-entry	system,	allow	centralization	and	standardization	of	risk	controls.	Position	
limits,	however,	are	intended	as	“speed	bumps	on	trading”	and	not	as	actual	credit	controls.	
These	limits	include	start-of-day	positions,	cash	in	account,	and	cross-asset	margining.		
Position	limits	provide	the	ability	to	automatically	halt	errant	algorithms	before	credit	
limits	are	exceeded.	Once	a	trader	is	blocked,	the	risk	department	has	time	to	perform	a	risk	
evaluation	before	allowing	further	trading.	

Principle: 
The	exchange	should	make	available	the	ability	to	set	pre-trade	intraday	position	limits.		
Once	the	trading	entity	has	reached	these	limits,	only	risk-reducing	trades	would	be	allowed.		

Recommended Implementation for Futures:
The	position	limit	capability	should	have	the	following	characteristics:

•	 Set	by	trader,	account,	or	firm	and	with	the	ability	to	set	by	groups	of	traders	or	
accounts.

•	 Set	maximum	cumulative	long	positions	and	maximum	cumulative	short	positions.
•	 Include	working	orders	in	maximum	long/maximum	short	position	calculations.	
•	 Set	by	product	level.	
•	 Provide	the	ability	to	raise	or	lower	limits	intraday.
•	 Be	configurable	by	open	API,	preferably	FIX	API.
•	 Be	mandatory	for	all	participants	so	that	latency	is	the	same	for	all.

Recommended Implementation for Options:
•	 Recognizing	that	options	have	a	lower	delta	than	futures,	position	limit	capability	

must	include	the	ability	to	differentiate	limits	by	product	type.

c. Cancel-On-Disconnect
When	a	system	unintentionally	disconnects	from	the	exchange	network,	it	creates	
uncertainty	about	the	status	of	working	orders.	Automatic	cancellation	of	orders	upon	
disconnect	provides	certainty	to	the	trading	firm	and	risk	manager	whether	orders	have	been	
filled	or	cancelled.	Some	users,	however,	may	not	want	to	have	their	orders	automatically	
pulled	from	a	market	as	the	working	order	may	be	part	of	a	hedged	position	or	a	cross-
exchange	strategy	trade.	

Principle: 
Exchanges	should	implement	a	flexible	system	that	allows	a	user	to	determine	whether	their	
orders	should	be	left	in	the	market	upon	disconnection.	This	should	only	be	implemented	if	
the	clearing	firm’s	risk	manager	has	the	ability	to	cancel	working	orders	for	the	trader	if	the	
trading	system	is	disconnected.	The	exchange	should	establish	a	policy	whether	the	default	
setting	for	all	market	participants	should	be	to	maintain	or	cancel	all	working	orders.	

d. Kill Button 
A	“kill”	button	provides	clearing	firms	with	a	fast	and	efficient	way	to	halt	trading	activity	at	
the	exchange	level	when	a	trading	firm	breaches	its	obligations	vis-a-vis	the	clearer	(e.g.	by	
exceeding	credit	limits	due	to	erroneous	activity	of	an	automated	trading	application).		The	
trading	firm	will	be	excluded	from	trading	until	the	clearing	firm	explicitly	reinstates	it.
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Principle:
Exchanges	should	provide	clearing	firms	with	the	ability	to:		1)	delete	all	open	orders	and	
quotes	and	2)	reject	entry	of	new	orders	and	quotes.	

Recommended Implementation: 
•	 The	exchange	should	have	a	registration	system	that	requires	firms	to	specify	which	

staff	members	are	authorized	to	use	the	kill	button.	
•	 The	system	itself	should	have	explicit	warnings	informing	authorized	users	of	the	

consequences	of	activating	the	kill	button.
•	 Similar	functionality	could	be	implemented	to	allow	a	trading	firm	to	halt	trading	

activity	on	a	firm-wide,	trading	group	or	individual	trader	basis.		

e. Order Cancel Capabilities
Principle: 
Exchanges	should	provide	to	clearing	members	an	order	management	tool	that	allows	real-
time	access	to	information	on	working	and	filled	electronic	orders.		The	tool	should	provide	
risk	mitigation	functionality	in	the	event	of	an	electronic	trading	system	failure.

Recommended Implementation: 
The	clearing	member	and	trading	firm	should	have	the	ability	to	view	and	cancel	orders	via	
this	tool.		Clearing	members	should	be	able	to	delegate	and	permission	the	tool	for	individual	
traders	or	firms	at	granular	levels.	

The	tool	should	provide	view	capabilities	for:
	 •									current	order	status
	 •									fill	information,	including	partial	fills
	 •									cancel	and	replace	history
	 •									order	timestamps

The	tool	should	provide	cancel	capabilities	for:
	 •									individual	orders
	 •									groups	of	orders
	 •									all	working	orders	via	a	single	command

f. Price Banding/Dynamic Price Limits
Price	banding	or	dynamic	price	limits	are	an	automated	order-entry	screening	process	
designed	to	prevent	entry	of	buy	or	sell	orders	priced	substantially	through	the	contra	side	of	
the	market.	It	reduces	the	number	of	error	trades	that	take	place	in	the	market	by	preventing	
bids	from	being	entered	too	far	above	current	market	prices	and	offers	from	being	entered	too	
far	below	current	market	prices.

Principle: 
The	exchange	should	have	the	ability	to	set	price	limits	on	a	dynamic	basis,	continuously	
adjusting	throughout	the	day	to	account	for	current	market	conditions.	
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Recommended Implementation:
Exchanges	should	have	the	ability	to	widen	price	bands	throughout	the	trading	day	when	
necessary	to	account	for	additional	volatility	in	the	market.	The	width	of	the	price	limits	
should	be	determined	by	product.	Price	banding	occasionally	can	be	too	strict	for	less	liquid	
markets	and	may	need	manual	intervention	to	facilitate	trading	if	the	current	range	is	
deemed	unsuitable.

Price	banding	for	options	requires	a	different	approach	because	options	are	more	dynamic.	
Price	banding	may	be	too	restrictive	for	less	liquid	options	contracts	because	of	wider	bid-ask	
spreads.

g. Market Maker/Sweep Protections
Sweep	protections	are	designed	for	firms	with	specific	market-marketing	obligations	to	quote	
options	en	masse.	Although	these	protections	are	most	frequently	used	in	options	markets,	
they	can	be	applied	to	other	markets.	Market-maker	protections	are	parameters	set	by	market	
makers	and	implemented	by	the	exchange	to	provide	a	degree	of	risk	protection	by	limiting	
the	market	maker’s	quote	execution	exposure.

Principle:
Exchanges	should	allow	a	level	of	protection	for	market	makers	who	quote	simultaneously	on	
both	sides	of	the	market.

Recommended Implementation: 
Protection	parameters	should	be	optional	and	should	allow	values	to	be	set	by	each	market	
maker	or	market-making	entity.	When	market	maker-defined	protection	values	are	met	or	
exceeded	within	certain	time	intervals,	the	protections	should	be	triggered.	When	triggered,	
the	electronic	trading	system	would	initiate	the	market-maker	protection	functionality,	
which	rejects	new	messages	and/or	cancels	resting	quotes	associated	with	the	market	maker.

h. Internal Trade Crossing 
It	is	common	for	multiple	independent	trading	strategies	to	be	active	at	the	same	time	within	
a	single	firm.	The	strategies	may	interact	on	the	market	by	taking	opposite	sides,	occasionally	
generating	inadvertent	wash	trades.	This	is	a	common	situation	with	direct	access	and	the	
increasing	use	of	broker	execution	algorithms	that	may	stretch	orders	over	a	period	of	time,	
micro-manage	slices	that	may	interact	with	another	order	placed	by	the	same	legal	entity,	or	
run	as	an	auto-hedging	facility	with	no	intention	upfront	to	create	a	wash	trade.

The	MAWG	considered	whether	technology	could	assist	risk	managers	in	identifying	wash	
trades.	The	group	concluded	that	it	is	impossible	for	exchanges	to	implement	such	risk	
controls	because	account	ownership	information	is	not	available	at	the	matching	engine.	
While	clearing	members	have	the	ownership	information	and	can	confirm	whether	a	client	
resides	in	the	same	profit	center	of	the	firm,	algorithms	may	be	producing	orders	that	interact	
with	accounts	within	the	same	legal	entity.	Further,	customers	can	use	multiple	systems	
within	a	legal	entity	that	don’t	necessarily	interact	with	each	other	on	a	pre-trade	basis.	The	
MAWG	concluded	that	there	was	no	way	to	design	a	rule	that	would	prevent	wash	trades	
without	preventing	legitimate	trades.
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Principle: 
Wash	trades	are	prohibited	to	prevent	manipulating	the	market	by	artificially	distorting	
market	price	or	volume.	Inadvertent	crosses	do	not	have	the	intent	to	mislead	the	public.	
Exchanges,	working	within	the	framework	provided	by	their	respective	regulators,	should	set	
guidelines	for	vendors,	customers,	and	clearing	members,	defining	what	would	be	acceptable	
reasons	for	inadvertent	cross	trades.	Existing	rules	should	be	re-examined	in	the	context	of	
today’s	trading	environment.

2. Post-Trade Checks 
	In	addition	to	pre-trade	risk	controls,	post-trade	checks	allow	clearing	and	trading	firm	risk	
managers	to	track	all	working/open	orders	and	all	executed	and	cleared	orders.	“Drop	copy”	
functionality	gives	clearing	firms	the	ability	to	monitor	orders	on	a	near	real-time	basis	
without	adding	latency	to	the	order	flow.	Drop-copy	functionality	allows	clearing	members	
to	receive	duplicate	copies	of	client	working/executed	orders	as	they	enter	the	exchange	
network	and/or	are	matched	at	the	clearinghouse.

Principle: 
Exchanges	should	make	drop	copies	available	to	clearing	and	trading	firms.	

•	 Trade	capture	drop	copy:	Exchanges	should	provide	clearing	firms	with	drop	copies	
of	orders	and	executed	trades.	This	allows	clearing	firms	to	get	their	current	set	of	
trades	and	positions	from	a	secondary	channel	independent	of	the	primary	trading	
system.

•	 Post-clearing	drop	copy:	Exchanges	should	provide	clearing	firms	net	position	per	
maturity	per	contract	as	soon	as	the	trade	is	matched	at	the	clearinghouse.	This	
functionality	needs	to	be	as	close	to	real-time	as	possible.

•	 Exchange	drop-copy	functionality	should	allow	clearing	firms	to	enable	trading	firms	
to	receive	trade	capture	and	post-clearing	drop	copies.

Recommended Implementation: 
The	post-clearing	drop	copy	feed	should	contain	all	messages	including	acknowledgements,	
fills,	amendments	and	cancellations.	Exchanges	need	to	work	toward	an	industry	standard	of	
delivering	cleared	information	in	a	maximum	of	two-three	minutes	after	a	trade	is	executed.	
This	data	needs	to	be	delivered	via	a	standard	protocol,	preferably	via	FIX	API.	

3. Co-Location Policies 
When	considering	co-location,	exchanges	should	recognize	that	one	of	the	main	benefits	of	
such	a	service	is	that	it	creates	a	level	playing	field	for	firms	that	want	low-latency	access	to	the	
exchange.	It	provides	firms,	both	large	and	small,	with	low-latency	connectivity	for	a	reasonable	
cost	made	possible	by	the	exchange	sharing	the	costs	of	the	required	technical	infrastructure	
with	interested	participants.		When	co-location	and	proximity	sites	are	not	available,	it	
encourages	firms	to	seek	confidential	knowledge	about	matching	engine	locations	and	compete	
for	building	space	closest	to	those	engines	so	they	can	build	their	own	private	data	centers.	This	
exacerbates	the	differences	in	the	ability	of	market	participants	to	obtain	market	access.	

Principle:
Steps	should	be	taken	to	ensure	that	access	to	co-location	is	available	to	every	firm	that	is	
interested	in	such	a	service	and	that	the	terms	of	the	co-location	service	remain	transparent	
to	all	market	participants.



13	 April	2010

Market Access Risk Management Recommendations

4. Conformance/Certification Testing
Principle:

•	 All	trading	firms	that	wish	to	write	directly	to	the	order	entry	or	market	data	
interfaces	of	an	exchange	should	be	required	to	pass	an	initial	set	of	conformance	
tests	for	execution	and	market	data	that	highlight	basic	functionality	of	the	trading	
system	that	will	be	making	the	direct	connection.		All	ISVs	and	proprietary	systems	
should	be	required	to	pass	the	same	conformance	tests,	so	the	proprietary	system	
client	using	the	ISV	should	not	be	required	to	pass	conformance.		

•	 The	exchange	should	be	required	to	provide	a	conformance	environment	on-
demand	for	re-certification	requirements.

Recommended Implementation: 
A	representative	of	the	exchange	should	interview	the	proprietary	system	client	to	determine	
which	functionality	should	be	tested.		Exchanges	should	test	the	ability	of	a	direct	access	firm	to:

•	 Send	a	request	for	and	process	the	exchange’s	response	for	the	following:	Log	On,	
Log	Off,	New	Order,	Cancel,	Order	Modify,	Sequence	Reset,	Instrument	Definition	
Requests,	and	Market	Snapshot	requests.

•	 Process	the	following	exchange	messages:	Business	Reject,	Session	Reject,	Complete	
Fills,	Partial	Fills,	Exchange	Open/Close,	Market	Data	Updates,	Trade	Updates.	

•	 Properly	handle	the	exchange	recovery	mechanism	provided	when	messages	are	sent	
from	the	exchange	to	a	proprietary	system	participant,	but	the	client	isn’t	actively	
connected.		

•	 Recertification	should	be	required	whenever	core	functionality	has	changed	at	the	
exchange.		It	should	be	up	to	the	exchange	to	decide	what	functionality	needs	to	
be	recertified	as	well	as	to	notify	each	proprietary	system	participant	of	the	need	to	
recertify.

•	 Recertification	should	be	required	whenever	a	participant’s	core	functionality	has	
changed.		It	is	up	to	the	proprietary	system	participant	to	notify	the	exchange	when	
this	happens	as	well	as	to	schedule	the	conformance	test.		
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5. Error Trade Policy 
The	potential	for	trading	errors	by	direct	access	traders	causing	significant	market	disruptions	
is	of	utmost	concern	to	all	market	participants	and	regulators.		Although	traders	and	trading	
system	engineers	have	an	incentive	to	build	robust	systems	and	safeguards	to	avoid	potential	
error	trade	situations	and	the	substantial	costs	associated	with	them,	the	potential	for	error	
trades	still	exists.	Robust	pre-trade	risk	controls	such	as	price	banding	significantly	reduce	the	
potential	for	erroneous	trades	but	exchanges	still	need	to	enforce	a	strict	error	trade	policy.		

A	robust	error	trade	policy	minimizes	systemic	risk	by	affording	market	participants	
confidence	that	when	an	error	trade	occurs,	it	will	be	evaluated	and	resolved	according	to	a	
uniform	set	of	policies	and	procedures.	Conversely,	subjectivity	or	ambiguity	in	an	error	trade	
policy	amplifies	risk	through	uncertainty.	The	objective	of	an	error	trade	policy	should	be	to	
remove	the	uncertainty	of	open-ended	market	exposure	and	allow	traders	to	expeditiously	
resume	normal	trading	activity.	This	is	critical	for	maintaining	market	confidence	and	
continuity.

a. Trade Certainty
An	important	aspect	of	market	integrity	is	the	confidence	that,	once	executed,	transactions	
will	stand	and	will	not	be	subject	to	arbitrary	cancellation.	

Principle:
Exchanges	should	adopt	a	“Preferred	Adjust-Only	Policy”	to	ensure	absolute	trade	certainty	
to	all	parties	to	an	error	trade.		In	a	Preferred	Adjust-Only	Policy	all	trades	inside	of	a	
product-specific	“no-adjust”	range	are	ineligible	for	adjustment.	All	trades	outside	of	the	
no-adjust	range	potentially	could	be	adjusted	to	the	edge	of	the	no-adjust	range	from	
the	prevailing	market	at	the	time	of	execution.	The	Preferred	Adjust-Only	Policy	would	
not	eliminate	the	authority	of	an	exchange	to	cancel	or	correct	trades	under	extreme	
circumstances.

b. Contingency Orders
The	most	challenging	aspect	of	an	error	trade	policy	is	the	appropriate	way	to	handle	a	
contingency	or	stop	order	triggered	by	an	erroneous	transaction.	The	MAWG	recognizes	that	
a	clearing	firm	could	incur	losses	on	contingency	orders	their	customers	placed	which	were	
filled	as	the	result	of	an	erroneous	trade	but	cannot	be	passed	on	to	the	customer	since	the	
adjusted	price	does	not	indicate	that	the	order	should	have	been	filled.	

Principle:		
In	keeping	with	the	objective	of	the	Preferred	Adjust-Only	Policy,	contingent	or	stop	orders	
executed	as	a	result	of	an	error	trade	should	be	eligible	for	compensation	from	the	party	that	
made	the	error.	An	exchange’s	authority	to	cancel	orders	under	extreme	circumstances	should	
not	be	invoked	merely	because	an	order	is	a	contingent	order.	
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c. Notification
Markets	continue	to	trade	while	the	parties	to	a	trade	and	the	exchange	determine	whether	
a	trade	is	erroneous.		The	identification	of	a	possibly	erroneous	trade	well	after	it	has	been	
executed	and	its	later	cancellation	can	create	even	more	uncertainty	in	the	market.	Market	
integrity,	therefore,	demands	that	exchange	policies	and	procedures	establish	strict,	narrow	
time	frames	in	which	a	request	to	cancel	a	trade	is	made.	

Principle: 
The	exchange	should	establish	a	minimal	reporting	time	of	less	than	five	minutes	for	firms	to	
notify	the	exchange	that	an	error	has	occurred.	

The	exchange	should	announce	a	potential	adjust-or-bust	situation	immediately	upon	
notification	and	the	adjust	decision	should	be	disseminated	to	the	marketplace	within	a	
reasonable	timeframe	via	a	specific	market	data	message,	email	and/or	other	established	mode	
of	communication	on	a	best	efforts	basis.
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